A machine learning approach for automated assessment of retinal vasculature in the oxygen induced retinopathy model

被引:17
|
作者
Mazzaferri, Javier [1 ]
Larrivee, Bruno [1 ,2 ]
Cakir, Bertan [3 ]
Sapieha, Przemyslaw [1 ,2 ,4 ]
Costantino, Santiago [1 ,2 ]
机构
[1] Maisonneuve Rosemont Hosp, Res Ctr, Montreal, PQ, Canada
[2] Univ Montreal, Dept Ophthalmol, Montreal, PQ, Canada
[3] Univ Freiburg, Ctr Eye, Med Ctr, Fac Med, Freiburg, Germany
[4] Univ Montreal, Dept Biochem, Montreal, PQ, Canada
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
基金
加拿大健康研究院;
关键词
ENDOTHELIAL GROWTH-FACTOR; MOUSE; ANGIOGENESIS;
D O I
10.1038/s41598-018-22251-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Preclinical studies of vascular retinal diseases rely on the assessment of developmental dystrophies in the oxygen induced retinopathy rodent model. The quantification of vessel tufts and avascular regions is typically computed manually from flat mounted retinas imaged using fluorescent probes that highlight the vascular network. Such manual measurements are time-consuming and hampered by user variability and bias, thus a rapid and objective method is needed. Here, we introduce a machine learning approach to segment and characterize vascular tufts, delineate the whole vasculature network, and identify and analyze avascular regions. Our quantitative retinal vascular assessment (QuRVA) technique uses a simple machine learning method and morphological analysis to provide reliable computations of vascular density and pathological vascular tuft regions, devoid of user intervention within seconds. We demonstrate the high degree of error and variability of manual segmentations, and designed, coded, and implemented a set of algorithms to perform this task in a fully automated manner. We benchmark and validate the results of our analysis pipeline using the consensus of several manually curated segmentations using commonly used computer tools. The source code of our implementation is released under version 3 of the GNU General Public License (https://www.mathworks.com/matlabcentral/fileexchange/65699-javimazzaf-qurva).
引用
收藏
页数:11
相关论文
共 50 条
  • [11] Oxygen-Induced Retinopathy Model for Ischemic Retinal Diseases in Rodents
    Vahatupa, Maria
    Jaaskelainen, Niina
    Cerrada-Gimenez, Marc
    Thapa, Rubina
    Jarvinen, Tero
    Kalesnykas, Giedrius
    Uusitalo-Jarvinen, Hannele
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2020, (163): : 1 - 19
  • [12] Diltiazem reduces retinal neovascularization in a mouse model of oxygen induced retinopathy
    Higgins, RD
    Yu, K
    Sanders, RJ
    Nandgaonkar, BN
    Rotschild, T
    Rifkin, DB
    CURRENT EYE RESEARCH, 1999, 18 (01) : 20 - 27
  • [13] Characterization of retinal nucleolin expression in an oxygen-induced retinopathy model
    Garfias, Yonathan
    Iturriaga-Goyon, Emilio
    Castro, Ilse
    Sofia Magana-Guerrero, Fatima
    Dominguez-Lopez, Alfredo
    Vivanco-Rojas, Oscar
    Sanchez-Bartez, Francisco
    Rivera-Huerta, Marisol
    Isabel Gracia-Mora, Maria
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [14] In Vivo Imaging of Retinal Hypoxia in a Model of Oxygen-Induced Retinopathy
    Uddin, Md. Imam
    Evans, Stephanie M.
    Craft, Jason R.
    Capozzi, Megan E.
    McCollum, Gary W.
    Yang, Rong
    Marnett, Lawrence J.
    Uddin, Md. Jashim
    Jayagopal, Ashwath
    Penn, John S.
    SCIENTIFIC REPORTS, 2016, 6
  • [15] Inner retinal oxygen metabolism in the 50/10 oxygen-induced retinopathy model
    Soetikno, Brian T.
    Yi, Ji
    Shah, Ronil
    Liu, Wenzhong
    Purta, Patryk
    Zhang, Hao F.
    Fawzi, Amani A.
    SCIENTIFIC REPORTS, 2015, 5
  • [16] Inner retinal oxygen metabolism in the 50/10 oxygen-induced retinopathy model
    Brian T. Soetikno
    Ji Yi
    Ronil Shah
    Wenzhong Liu
    Patryk Purta
    Hao F. Zhang
    Amani A. Fawzi
    Scientific Reports, 5
  • [17] Automated Machine Learning for Diabetic Retinopathy Progression
    Zhao, Lanqin
    Lin, Duoru
    Lin, Haotian
    JAMA OPHTHALMOLOGY, 2024, 142 (03) : 178 - 179
  • [18] Automated Assessment of Vascular Tortuosity in Mouse Models of Oxygen-Induced Retinopathy
    Chen, Jimmy S.
    Marra, Kyle V.
    Robles-Holmes, Hailey K.
    Ly, Kristine B.
    Miller, Joseph
    Wei, Guoqin
    Aguilar, Edith
    Bucher, Felicitas
    Ideguchi, Yoichi
    Coyner, Aaron S.
    Ferrara, Napoleone
    Campbell, J. Peter
    Friedlander, Martin
    Nudleman, Eric
    OPHTHALMOLOGY SCIENCE, 2024, 4 (01):
  • [19] Fully automated, deep learning segmentation of oxygen-induced retinopathy images
    Xiao, Sa
    Bucher, Felicitas
    Wu, Yue
    Rokem, Ariel
    Lee, Cecilia S.
    Marra, Kyle V.
    Fallon, Regis
    Diaz-Aguilar, Sophia
    Aguilar, Edith
    Friedlander, Martin
    Lee, Aaron Y.
    JCI INSIGHT, 2017, 2 (24)
  • [20] Web based, fully automated, deep learning segmentation of oxygen induced retinopathy
    Xiao, Sa
    Bucher, Felicitas
    Wu, Yue
    Rokem, Ariel
    Lee, Cecilia S.
    Marra, Kyle V.
    Fallon, Regis
    Diaz-Aguilar, Sophia
    Aguilar, Edith
    Friedlander, Martin
    Lee, Aaron Y.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2018, 59 (09)