Enhanced electrochemical performance and stability of (La,Sr) MnO3-(Gd,Ce)O2 oxygen electrodes of solid oxide electrolysis cells by palladium infiltration

被引:51
作者
Chen, Kongfa
Ai, Na
Jiang, San Ping [1 ]
机构
[1] Curtin Univ, Fuels & Energy Technol Inst, Perth, WA 6102, Australia
关键词
Solid oxide electrolysis cells; LSM-GDC composite oxygen electrode; Nano-structured electrode; Oxygen evolution; Palladium infiltration; HIGH-TEMPERATURE ELECTROLYSIS; HYDROGEN-PRODUCTION; COMPOSITE CATHODES; REDUCTION REACTION; (LA; SR)MNO3; ELECTRODES; POLARIZATION BEHAVIOR; FUEL-CELLS; ANODES; LSM; BA0.5SR0.5CO0.8FE0.2O3-DELTA;
D O I
10.1016/j.ijhydene.2011.10.015
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Palladium-impregnated or infiltrated La0.8Sr0.2MnO3-Gd0.2Ce0.8O1.9 (LSM-GDC) composites are studied as the oxygen electrodes (anodes) for the hydrogen production in solid oxide electrolysis cells (SOECs). The incorporation of small amount of Pd nanoparticles leads to a substantial increase in the electrocatalytic activity and stability of the LSM-GDC oxygen electrodes. The electrode polarization resistance (R-E) at 800 degrees C on a 0.2 mg cm(-2) Pd-infiltrated LSM-GDC electrode is 0.13 Omega cm(2), significantly smaller than 0.42 Omega cm(2) for the reaction on the pure LSM-GDC electrodes. The overpotential loss is also substantially reduced after the Pd infiltration; at an anodic overpotential 50 mV and 800 degrees C, the current increases from 0.15 A cm(-2) for the pure LSM-GDC anode to 0.47 A cm(-2) on a 0.3 mg cm(-2) Pd-infiltrated LSM-GDC. The infiltrated Pd nanoparticles enhance the stability of the LSM-GDC oxygen electrodes and are most effective in the promotion of the diffusion, exchange and combination processes of oxygen species on the surface of LSM-GDC particles, leading to the increase in the oxygen evolution reaction rate. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1301 / 1310
页数:10
相关论文
共 64 条
[1]   Factors governing oxygen reduction in solid oxide fuel cell cathodes [J].
Adler, SB .
CHEMICAL REVIEWS, 2004, 104 (10) :4791-4843
[2]   Vacuum-assisted electroless copper plating on Ni/(Sm,Ce)O2 anodes for intermediate temperature solid oxide fuel cells [J].
Ai, Na ;
Chen, Kongfa ;
Jiang, San Ping ;
Lue, Zhe ;
Su, Wenhui .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (13) :7661-7669
[3]   Electrocatalytic Promotion of Palladium Nanoparticles on Hydrogen Oxidation on Ni/GDC Anodes of SOFCs via Spillover [J].
Babaei, Alireza ;
Jiang, San Ping ;
Li, Jian .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (09) :B1022-B1029
[4]   High temperature water electrolysis in solid oxide cells [J].
Brisse, Annabelle ;
Schefold, Josef ;
Zahid, Mohsine .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (20) :5375-5382
[5]   OXYGEN-TRANSPORT IN SELECTED NONSTOICHIOMETRIC PEROVSKITE-STRUCTURE OXIDES [J].
CARTER, S ;
SELCUK, A ;
CHATER, RJ ;
KAJDA, J ;
KILNER, JA ;
STEELE, BCH .
SOLID STATE IONICS, 1992, 53 :597-605
[6]   A new anode material for solid oxide electrolyser: The neodymium nickelate Nd2NiO4+δ [J].
Chauveau, F. ;
Mougin, J. ;
Bassat, J. M. ;
Mauvy, F. ;
Grenier, J. C. .
JOURNAL OF POWER SOURCES, 2010, 195 (03) :744-749
[7]   Palladium and ceria infiltrated La0.8Sr0.2Co0.5Fe0.5O3-δ cathodes of solid oxide fuel cells [J].
Chen, Jing ;
Liang, Fengli ;
Chi, Bo ;
Pu, Jian ;
Jiang, San Ping ;
Jian, Li .
JOURNAL OF POWER SOURCES, 2009, 194 (01) :275-280
[8]   Failure mechanism of (La,Sr)MnO3 oxygen electrodes of solid oxide electrolysis cells [J].
Chen, Kongfa ;
Jiang, San Ping .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (17) :10541-10549
[9]   Development of (Gd,Ce)O2-Impregnated (La,Sr)MnO3 Anodes of High Temperature Solid Oxide Electrolysis Cells [J].
Chen, Kongfa ;
Ai, Na ;
Jiang, San Ping .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (11) :P89-P94
[10]   Defect chemistry of La1-xSrxMnO3±δ under cathodic polarization [J].
Chen, XJ ;
Chan, SH ;
Khor, KA .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2004, 7 (06) :A144-A147