Multi-Target Integration and Annotation of Single-Cell RNA-Sequencing Data

被引:0
作者
Bhandari, Sapan [1 ]
Whitener, Nathan P. [1 ]
Zhao, Konghao [1 ]
Khuri, Natalia [1 ]
机构
[1] Wake Forest Univ, Winston Salem, NC 27101 USA
来源
13TH ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY AND HEALTH INFORMATICS, BCB 2022 | 2022年
关键词
data integration; classification; regression; single-cell sequencing;
D O I
10.1145/3535508.3545511
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cells are the building blocks of human tissues and organs, and the distributions of different cell-types change due to environmental or disease conditions and treatments. Single-cell RNA sequencing is used to study heterogeneity of cells in biological samples. To date, computational approaches aided in the discovery of dominant and rare cell-types and facilitated the construction of cell atlases. Integration of new data with the existing reference atlases is an emerging computational problem, and this paper proposes to frame it as a multi-target prediction task, solvable using supervised machine learning. We systematically and rigorously test 63 different predictors on synthetic benchmarks with different properties. The best performing predictor has high Cohen's Kappa scores and low mean absolute errors in single-batch and multi-batch integration experiments.
引用
收藏
页数:4
相关论文
共 18 条
[1]  
Abadi M., 2015, TensorFlow: Large-scale machine learning on heterogeneous systems
[2]   Single-Cell RNA-Seq Technologies and Related Computational Data Analysis [J].
Chen, Geng ;
Ning, Baitang ;
Shi, Tieliu .
FRONTIERS IN GENETICS, 2019, 10
[3]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[4]  
Chollet F., 2015, Keras
[5]   Single-cell RNA sequencing: Technical advancements and biological applications [J].
Hedlund, Eva ;
Deng, Qiaolin .
MOLECULAR ASPECTS OF MEDICINE, 2018, 59 :36-46
[6]   Fast, sensitive and accurate integration of single-cell data with Harmony [J].
Korsunsky, Ilya ;
Millard, Nghia ;
Fan, Jean ;
Slowikowski, Kamil ;
Zhang, Fan ;
Wei, Kevin ;
Baglaenko, Yuriy ;
Brenner, Michael ;
Loh, Po-ru ;
Raychaudhuri, Soumya .
NATURE METHODS, 2019, 16 (12) :1289-+
[7]   Eleven grand challenges in single-cell data science [J].
Laehnemann, David ;
Koester, Johannes ;
Szczurek, Ewa ;
McCarthy, Davis J. ;
Hicks, Stephanie C. ;
Robinson, Mark D. ;
Vallejos, Catalina A. ;
Campbell, Kieran R. ;
Beerenwinkel, Niko ;
Mahfouz, Ahmed ;
Pinello, Luca ;
Skums, Pavel ;
Stamatakis, Alexandros ;
Attolini, Camille Stephan-Otto ;
Aparicio, Samuel ;
Baaijens, Jasmijn ;
Balvert, Marleen ;
de Barbanson, Buys ;
Cappuccio, Antonio ;
Corleone, Giacomo ;
Dutilh, Bas E. ;
Florescu, Maria ;
Guryev, Victor ;
Holmer, Rens ;
Jahn, Katharina ;
Lobo, Thamar Jessurun ;
Keizer, Emma M. ;
Khatri, Indu ;
Kielbasa, Szymon M. ;
Korbel, Jan O. ;
Kozlov, Alexey M. ;
Kuo, Tzu-Hao ;
Lelieveldt, Boudewijn P. F. ;
Mandoiu, Ion I. ;
Marioni, John C. ;
Marschall, Tobias ;
Moelder, Felix ;
Niknejad, Amir ;
Raczkowski, Lukasz ;
Reinders, Marcel ;
de Ridder, Jeroen ;
Saliba, Antoine-Emmanuel ;
Somarakis, Antonios ;
Stegle, Oliver ;
Theis, Fabian J. ;
Yang, Huan ;
Zelikovsky, Alex ;
McHardy, Alice C. ;
Raphael, Benjamin J. ;
Shah, Sohrab P. .
GENOME BIOLOGY, 2020, 21 (01)
[8]   Towards a Human Cell Atlas: Taking Notes from the Past [J].
Lindeboom, Rik G. H. ;
Regev, Aviv ;
Teichmann, Sarah A. .
TRENDS IN GENETICS, 2021, 37 (07) :625-630
[9]   Benchmarking atlas-level data integration in single-cell genomics [J].
Luecken, Malte D. ;
Buettner, M. ;
Chaichoompu, K. ;
Danese, A. ;
Interlandi, M. ;
Mueller, M. F. ;
Strobl, D. C. ;
Zappia, L. ;
Dugas, M. ;
Colome-Tatche, M. ;
Theis, Fabian J. .
NATURE METHODS, 2022, 19 (01) :41-+
[10]   Deep Learning Based Tumor Type Classification Using Gene Expression Data [J].
Lyu, Boyu ;
Haque, Anamul .
ACM-BCB'18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2018, :89-96