SYMMETRY REDUCTIONS AND EXPLICIT SOLUTIONS OF (3+1)-DIMENSIONAL BURGERS SYSTEM

被引:4
作者
Lv, Na [1 ]
Mei, Jian-Qin [1 ]
Zhang, Hong-Qing [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2011年 / 25卷 / 26期
关键词
Symmetry reduction; Burgers system; Lie group method; explicit solution; SIMILARITY REDUCTIONS; BOUSSINESQ EQUATION; INTEGRABLE SYSTEMS; EXPANSION METHOD; WAVE SOLUTIONS; TRANSFORMATION; SOLITONS;
D O I
10.1142/S0217979211101508
中图分类号
O59 [应用物理学];
学科分类号
摘要
With the aid of symbolic computation, we use the Lie group method to find the Lie point symmetries of (3+1)-dimensional Burgers system, and reduce the system with the obtained symmetries. As a result, many kinds of new symmetry reductions have been presented. And some explicit solutions are given due to the Riccati equation method.
引用
收藏
页码:3473 / 3484
页数:12
相关论文
共 24 条
[1]  
[Anonymous], 1986, APPL LIE GROUP DIFFE, DOI DOI 10.1007/978-1-4684-0274-2
[2]  
Bluman G. W., 2013, Symmetries and Differential Equations, V81
[3]  
BLUMAN GW, 1969, J MATH MECH, V18, P1025
[4]   NEW SIMILARITY REDUCTIONS OF THE BOUSSINESQ EQUATION [J].
CLARKSON, PA ;
KRUSKAL, MD .
JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (10) :2201-2213
[5]   New exact solutions of the (3+1)-dimensional Burgers system [J].
Dai, Chao-Qing ;
Wang, Yue-Yue .
PHYSICS LETTERS A, 2009, 373 (02) :181-187
[7]   Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
PHYSICS LETTERS A, 2001, 289 (1-2) :69-74
[8]   Finite symmetry transformation groups and exact solutions of Lax integrable systems [J].
Lou, S. Y. ;
Ma, Hong-Cai .
CHAOS SOLITONS & FRACTALS, 2006, 30 (04) :804-821
[9]   Non-Lie symmetry groups of (2+1)-dimensional nonlinear systems obtained from a simple direct method [J].
Lou, SY ;
Ma, HC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (07) :L129-L137
[10]   A NOTE ON THE NEW SIMILARITY REDUCTIONS OF THE BOUSSINESQ EQUATION [J].
LOU, SY .
PHYSICS LETTERS A, 1990, 151 (3-4) :133-135