Krylov Subspace Methods for Model Order Reduction in Computational Electromagnetics

被引:4
|
作者
Bonotto, Matteo [1 ]
Cenedese, Angelo [2 ]
Bettini, Paolo [3 ]
机构
[1] Univ Padua, CRF, Padua, Italy
[2] Univ Padua, Dept Informat Engn, Padua, Italy
[3] Univ Padua, Dept Ind Engn, Padua, Italy
来源
IFAC PAPERSONLINE | 2017年 / 50卷 / 01期
关键词
Model order reduction (MOR); Krylov subspace method; Arnoldi algorithm; Computational Electromagnetics; DYNAMICAL-SYSTEMS;
D O I
10.1016/j.ifacol.2017.08.1019
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a model order reduction method via Krylov subspace projection, for applications in the field of computational electromagnetics (CEM). The approach results to be suitable both for SISO and MIMO systems, and is based on the numerically robust Arnoldi procedure. We have studied the model order reduction as the number of inputs and outputs changes, to better understand the behavior of the reduction technique. Relevant CEM examples related to the reduction of finite element method models are presented to validate this methodology, both in the 2D and in the 3D case. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:6355 / 6360
页数:6
相关论文
共 50 条
  • [41] Parallel model order reduction based on block discrete Fourier transform and Krylov subspace for parametric systems
    Li, Zhen
    Jiang, Yao-Lin
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2023, 54 (03) : 594 - 606
  • [42] Model-order reduction of coupled DAE systems via ε-embedding technique and Krylov subspace method
    Jiang, Yao-Lin
    Chen, Chun-Yue
    Chen, Hai-Bao
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2012, 349 (10): : 3027 - 3045
  • [43] Observability Variation in Emergent Dynamics: A Study using Krylov Subspace-based Model Order Reduction
    Yang, Zhaohui
    Jerath, Kshitij
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 3461 - 3466
  • [44] A Computational Global Tangential Krylov Subspace Method for Model Reduction of Large-Scale MIMO Dynamical Systems
    A. H. Bentbib
    K. Jbilou
    Y. Kaouane
    Journal of Scientific Computing, 2018, 75 : 1614 - 1632
  • [45] Model Reduction for Linear Simulated Moving Bed Chromatography Systems Using Krylov-Subspace Methods
    Li, Suzhou
    Yue, Yao
    Feng, Lihong
    Benner, Peter
    Seidel-Morgenstern, Andreas
    AICHE JOURNAL, 2014, 60 (11) : 3773 - 3783
  • [46] Extrapolation methods as nonlinear Krylov subspace methods
    McCoid, Conor
    Gander, Martin J.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 693 : 83 - 97
  • [47] A Computational Global Tangential Krylov Subspace Method for Model Reduction of Large-Scale MIMO Dynamical Systems
    Bentbib, A. H.
    Jbilou, K.
    Kaouane, Y.
    JOURNAL OF SCIENTIFIC COMPUTING, 2018, 75 (03) : 1614 - 1632
  • [48] Analysis of augmented Krylov subspace methods
    Saad, Y
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1997, 18 (02) : 435 - 449
  • [49] Spectral Variants of Krylov Subspace Methods
    Brígida Molina
    Marcos Raydan
    Numerical Algorithms, 2002, 29 : 197 - 208
  • [50] Krylov subspace split Bregman methods
    Alotaibi, Majed
    Buccini, Alessandro
    Reichel, Lothar
    APPLIED NUMERICAL MATHEMATICS, 2023, 184 : 371 - 390