Krylov Subspace Methods for Model Order Reduction in Computational Electromagnetics

被引:4
|
作者
Bonotto, Matteo [1 ]
Cenedese, Angelo [2 ]
Bettini, Paolo [3 ]
机构
[1] Univ Padua, CRF, Padua, Italy
[2] Univ Padua, Dept Informat Engn, Padua, Italy
[3] Univ Padua, Dept Ind Engn, Padua, Italy
来源
IFAC PAPERSONLINE | 2017年 / 50卷 / 01期
关键词
Model order reduction (MOR); Krylov subspace method; Arnoldi algorithm; Computational Electromagnetics; DYNAMICAL-SYSTEMS;
D O I
10.1016/j.ifacol.2017.08.1019
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a model order reduction method via Krylov subspace projection, for applications in the field of computational electromagnetics (CEM). The approach results to be suitable both for SISO and MIMO systems, and is based on the numerically robust Arnoldi procedure. We have studied the model order reduction as the number of inputs and outputs changes, to better understand the behavior of the reduction technique. Relevant CEM examples related to the reduction of finite element method models are presented to validate this methodology, both in the 2D and in the 3D case. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:6355 / 6360
页数:6
相关论文
共 50 条
  • [1] GPU Accelerated Krylov Subspace Methods for Computational Electromagnetics
    Velamparambil, Sanjay
    MacKinnon-Cormier, Sarah
    Perry, James
    Lemos, Robson
    Okoniewski, Michal
    Leon, Joshua
    2008 EUROPEAN MICROWAVE CONFERENCE, VOLS 1-3, 2008, : 1500 - +
  • [2] Orthogonalisation in Krylov subspace methods for model order reduction
    Heres, P. J.
    Schilders, W. H. A.
    SCIENTIFIC COMPUTING IN ELECTRICAL ENGINEERING, 2006, 9 : 39 - +
  • [3] Krylov subspace methods for model order reduction of bilinear control systems
    Breiten, Tobias
    Damm, Tobias
    SYSTEMS & CONTROL LETTERS, 2010, 59 (08) : 443 - 450
  • [4] Combining Krylov subspace methods and identification-based methods for model order reduction
    Heres, P. J.
    Deschrijver, D.
    Schilders, W. H. A.
    Dhaene, T.
    INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2007, 20 (06) : 271 - 282
  • [5] The Error Bound of Timing Domain in Model Order Reduction by Krylov Subspace Methods
    Wang, Xinsheng
    Yu, Mingyan
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2018, 27 (06)
  • [6] Krylov Subspace Based Model Order Reduction of Distribution Networks
    Garrido, Sebastian E. S.
    McCann, Roy A.
    2017 NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2017,
  • [7] Krylov Subspace Model Order Reduction for FE seismic analysis
    Amin, Mohd N.
    Krisnamoorthy, R. R.
    IEEE SYMPOSIUM ON BUSINESS, ENGINEERING AND INDUSTRIAL APPLICATIONS (ISBEIA 2012), 2012, : 239 - 243
  • [8] Model reduction in power systems using Krylov subspace methods
    Chaniotis, D
    Pai, MA
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2005, 20 (02) : 888 - 894
  • [9] H2 Pseudo-Optimality in Model Order Reduction by Krylov Subspace Methods
    Wolf, Thomas
    Panzer, Heiko K. F.
    Lohmann, Boris
    2013 EUROPEAN CONTROL CONFERENCE (ECC), 2013, : 3427 - 3432
  • [10] Structure-preserving model reduction of second-order systems by Krylov subspace methods
    Xu, Kang-Li
    Yang, Ping
    Jiang, Yao-Lin
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2018, 58 (1-2) : 305 - 322