Krylov Subspace Methods for Model Order Reduction in Computational Electromagnetics

被引:5
作者
Bonotto, Matteo [1 ]
Cenedese, Angelo [2 ]
Bettini, Paolo [3 ]
机构
[1] Univ Padua, CRF, Padua, Italy
[2] Univ Padua, Dept Informat Engn, Padua, Italy
[3] Univ Padua, Dept Ind Engn, Padua, Italy
来源
IFAC PAPERSONLINE | 2017年 / 50卷 / 01期
关键词
Model order reduction (MOR); Krylov subspace method; Arnoldi algorithm; Computational Electromagnetics; DYNAMICAL-SYSTEMS;
D O I
10.1016/j.ifacol.2017.08.1019
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a model order reduction method via Krylov subspace projection, for applications in the field of computational electromagnetics (CEM). The approach results to be suitable both for SISO and MIMO systems, and is based on the numerically robust Arnoldi procedure. We have studied the model order reduction as the number of inputs and outputs changes, to better understand the behavior of the reduction technique. Relevant CEM examples related to the reduction of finite element method models are presented to validate this methodology, both in the 2D and in the 3D case. (C) 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
引用
收藏
页码:6355 / 6360
页数:6
相关论文
共 16 条
[1]   Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems [J].
Bai, ZJ .
APPLIED NUMERICAL MATHEMATICS, 2002, 43 (1-2) :9-44
[2]   A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems [J].
Benner, Peter ;
Gugercin, Serkan ;
Willcox, Karen .
SIAM REVIEW, 2015, 57 (04) :483-531
[3]  
Bettini P., 2016, P 17 BIENN C EL FIEL
[4]  
Cenedese A., 2016, IEEE T MAGN, V52, P1
[5]   A new set of basis functions for the discrete geometric approach [J].
Codecasa, Lorenzo ;
Specogna, Ruben ;
Trevisan, Francesco .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (19) :7401-7410
[6]  
de Freitas N., 2005, Advances in Neural Information Processing Systems (NIPS), P251
[7]   2-D Versus 3-D Electromagnetic Field Modeling in Electromechanical Energy Converters [J].
Demenko, Andrzej ;
Wojciechowski, Rafal M. ;
Sykulski, Jan K. .
IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (02) :897-900
[8]  
Duffy D., 2001, APPL MATH
[9]   A survey of model reduction by balanced truncation and some new results [J].
Gugercin, S ;
Antoulas, AC .
INTERNATIONAL JOURNAL OF CONTROL, 2004, 77 (08) :748-766
[10]  
Hartmann F., 2013, APPL MATH