The accuracy of tuberculous meningitis diagnostic tests using Bayesian latent class analysis

被引:5
作者
Huy Ngoc Le [1 ]
Sriplung, Hutcha [2 ]
Chongsuvivatwong, Virasakdi [2 ]
Nhung Viet Nguyen [1 ]
Tri Huu Nguyen [1 ]
机构
[1] Vietnam Natl Lung Hosp, Hanoi, Vietnam
[2] Prince Songkla Univ, Epidemiol Unit, 15 Kanchanawanit Rd, Hat Yai 90110, Songkhla, Thailand
关键词
Tuberculous meningitis; Gene Xpert assay; Bayesian latent class analysis; IMPERFECT REFERENCE TESTS; XPERT MTB/RIF ASSAY; CEREBROSPINAL-FLUID; GENEXPERT MTB/RIF; GOLD; SPECIFICITY; SENSITIVITY; VALIDATION; STANDARDS; ADULTS;
D O I
10.3855/jidc.11862
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Introduction: Tuberculous meningitis (TBM) is the most dangerous form of tuberculosis with high mortality and disability rates. However, the delayed diagnostic process is often due to the absence of the gold standard tests leading to a lack of information about the sensitivity and specificity of diagnostic tests. This study aims to estimate the prevalence of 'IBM and determine the performance of four diagnostic procedures: the mycobacteria growth culture test, Gene Xpert assay, and analysis of protein levels and leukocyte count taken from cerebrospinal fluid. Methodology: We used a Bayesian latent class analysis to estimate the prevalence of TBM with 95% credible interval (CI), and the specificity and sensitivity of the four diagnostic procedures. The area under the receiver operating characteristic curve (AUC) of the cerebrospinal protein levels and leukocyte count were also compared and estimated using different thresholds. Results: A total of 1,213 patients suspected of having TBM were included. The estimated TBM prevalence was 34.8 % (95% CI: 28.8 - 41.3). The sensitivity of culture test and Gene Xpert assay was 62.7% (95% CI: 52.5 - 74.0), and 57.5% (95% CI: 51.0 - 64.0), and the specificity of Gene-Xpert was 95. 9% (95% CI: 92.0 - 99.8). The AUC for leukocyte count was 76.0%, and for protein level was 73.4%. Conclusions: This study provided better information about the performance of four routine diagnostic tests and the prevalence of TBM which can enhance disease control and improve treatment outcomes.
引用
收藏
页码:479 / 487
页数:9
相关论文
共 50 条
[41]   Bayesian latent class analysis when the reference test is imperfect [J].
Cheung, A. ;
Dufour, S. ;
Jones, G. ;
Kostoulas, P. ;
Stevenson, M. A. ;
Singanallur, N. B. ;
Firestone, S. M. .
REVUE SCIENTIFIQUE ET TECHNIQUE-OFFICE INTERNATIONAL DES EPIZOOTIES, 2021, 40 (01) :271-286
[42]   Latent class bivariate model for the meta-analysis of diagnostic test accuracy studies [J].
Eusebi, Paolo ;
Reitsma, Johannes B. ;
Vermunt, Jeroen K. .
BMC MEDICAL RESEARCH METHODOLOGY, 2014, 14
[43]   Performance of bovine genital campylobacteriosis diagnostic tests in bulls from Uruguay: a Bayesian latent class model approach [J].
Mederos, America ;
Galarraga, Denise ;
van der Graaf-van Bloois, Linda ;
Buczinski, Sebastien .
TROPICAL ANIMAL HEALTH AND PRODUCTION, 2022, 54 (01)
[44]   Diagnostic Accuracy of Interferon-Gamma Release Assays for Tuberculous Meningitis: A Systematic Review and Meta-Analysis [J].
Wen, An ;
Leng, Er-Ling ;
Liu, Shi-Min ;
Zhou, Yong-Liang ;
Cao, Wen-Feng ;
Yao, Dong-Yuan ;
Hu, Fan .
FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2022, 12
[45]   Diagnostic Performance Tests for Suspected Scaphoid Fractures Differ with Conventional and Latent Class Analysis [J].
Buijze, Geert A. ;
Mallee, Wouter H. ;
Beeres, Frank J. P. ;
Hanson, Timothy E. ;
Johnson, Wesley O. ;
Ring, David .
CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 2011, 469 (12) :3400-3407
[46]   An Iterative, Frequentist Approach for Latent Class Analysis to Evaluate Conditionally Dependent Diagnostic Tests [J].
Schoneberg, Clara ;
Kreienbrock, Lothar ;
Campe, Amely .
FRONTIERS IN VETERINARY SCIENCE, 2021, 8
[47]   Latent class models for medical diagnostic tests in multicenter trials [J].
Mori, Joji ;
Kano, Yutaka ;
Yoshizaki, Masahiro ;
Fukinbara, Satoru .
STATISTICS IN MEDICINE, 2013, 32 (29) :5091-5105
[48]   Diagnostic Prediction Model for Tuberculous Meningitis: An Individual Participant Data Meta-Analysis [J].
Stadelman-Behar, Anna M. ;
Tiffin, Nicki ;
Ellis, Jayne ;
Creswell, Fiona V. ;
Ssebambulidde, Kenneth ;
Nuwagira, Edwin ;
Richards, Lauren ;
Lutje, Vittoria ;
Hristea, Adriana ;
Jipa, Raluca Elena ;
Vidal, Jose E. ;
Azevedo, Renata G. S. ;
de Almeida, Sergio Monteiro ;
Kussen, Gislene Botao ;
Nogueira, Keite ;
Souza Gualberto, Felipe Augusto ;
Metcalf, Tatiana ;
Heemskerk, Anna Dorothee ;
Dendane, Tarek ;
Khalid, Abidi ;
Zeggwagh, Amine Ali ;
Bateman, Kathleen ;
Siebert, Uwe ;
Rochau, Ursula ;
van Laarhoven, Arjan ;
van Crevel, Reinout ;
Ganiem, Ahmad Rizal ;
Dian, Sofiati ;
Jarvis, Joseph ;
Donovan, Joseph ;
Thuong Nguyen Thuy Thuong ;
Thwaites, Guy E. ;
Bahr, Nathan C. ;
Meya, David B. ;
Boulware, David R. ;
Boyles, Tom H. .
AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2024, 111 (03) :546-553
[49]   Validity of purulent vaginal discharge, esterase, luminometry, and three bacteriological tests for diagnosing uterine infection in dairy cows using Bayesian latent class analysis [J].
Denis-Robichaud, Jose ;
Barbeau-Gregoire, Nicolas ;
Gauthier, Marie-Lou ;
Dufour, Simon ;
Roy, Jean-Philippe ;
Buczinski, Sebastien ;
Dubuc, Jocelyn .
PREVENTIVE VETERINARY MEDICINE, 2025, 239
[50]   Diagnostic efficacy of microscopy, rapid diagnostic test and polymerase chain reaction for malaria using bayesian latent class analysis [J].
Saha, Sreemanti ;
Narang, Rahul ;
Deshmukh, Pradeep ;
Pote, Kiran ;
Anvikar, Anup ;
Narang, Pratibha .
INDIAN JOURNAL OF MEDICAL MICROBIOLOGY, 2017, 35 (03) :376-380