The accuracy of tuberculous meningitis diagnostic tests using Bayesian latent class analysis

被引:5
作者
Huy Ngoc Le [1 ]
Sriplung, Hutcha [2 ]
Chongsuvivatwong, Virasakdi [2 ]
Nhung Viet Nguyen [1 ]
Tri Huu Nguyen [1 ]
机构
[1] Vietnam Natl Lung Hosp, Hanoi, Vietnam
[2] Prince Songkla Univ, Epidemiol Unit, 15 Kanchanawanit Rd, Hat Yai 90110, Songkhla, Thailand
关键词
Tuberculous meningitis; Gene Xpert assay; Bayesian latent class analysis; IMPERFECT REFERENCE TESTS; XPERT MTB/RIF ASSAY; CEREBROSPINAL-FLUID; GENEXPERT MTB/RIF; GOLD; SPECIFICITY; SENSITIVITY; VALIDATION; STANDARDS; ADULTS;
D O I
10.3855/jidc.11862
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Introduction: Tuberculous meningitis (TBM) is the most dangerous form of tuberculosis with high mortality and disability rates. However, the delayed diagnostic process is often due to the absence of the gold standard tests leading to a lack of information about the sensitivity and specificity of diagnostic tests. This study aims to estimate the prevalence of 'IBM and determine the performance of four diagnostic procedures: the mycobacteria growth culture test, Gene Xpert assay, and analysis of protein levels and leukocyte count taken from cerebrospinal fluid. Methodology: We used a Bayesian latent class analysis to estimate the prevalence of TBM with 95% credible interval (CI), and the specificity and sensitivity of the four diagnostic procedures. The area under the receiver operating characteristic curve (AUC) of the cerebrospinal protein levels and leukocyte count were also compared and estimated using different thresholds. Results: A total of 1,213 patients suspected of having TBM were included. The estimated TBM prevalence was 34.8 % (95% CI: 28.8 - 41.3). The sensitivity of culture test and Gene Xpert assay was 62.7% (95% CI: 52.5 - 74.0), and 57.5% (95% CI: 51.0 - 64.0), and the specificity of Gene-Xpert was 95. 9% (95% CI: 92.0 - 99.8). The AUC for leukocyte count was 76.0%, and for protein level was 73.4%. Conclusions: This study provided better information about the performance of four routine diagnostic tests and the prevalence of TBM which can enhance disease control and improve treatment outcomes.
引用
收藏
页码:479 / 487
页数:9
相关论文
共 50 条
[31]   Bayesian latent class analysis produced diagnostic accuracy estimates that were more interpretable than composite reference standards for extrapulmonary tuberculosis tests [J].
MacLean, Emily L. ;
Kohli, Mikashmi ;
Koeppel, Lisa ;
Schiller, Ian ;
Sharma, Surendra K. ;
Pai, Madhukar ;
Denkinger, Claudia M. ;
Dendukuri, Nandini .
DIAGNOSTIC AND PROGNOSTIC RESEARCH, 2022, 6 (01)
[32]   Diagnostic accuracy of Xpert MTB/RIF Ultra for tuberculous meningitis in a clinical practice setting of China [J].
Huang, Mailing ;
Wang, Guirong ;
Sun, Qing ;
Jiang, Guanglu ;
Li, Wensheng ;
Ding, Zeyu ;
Jia, Hongyan ;
Gao, Mengqiu ;
Huang, Hairong ;
Li, Qi .
DIAGNOSTIC MICROBIOLOGY AND INFECTIOUS DISEASE, 2021, 100 (01)
[33]   Bayesian latent class analysis of ELISA and RT-rPCR diagnostic accuracy for subclinical Renibacterium salmoninarum infection in Atlantic salmon (Salmo salar) broodstock [J].
Laurin, Emilie ;
Morrison, Diane ;
Gardner, Ian A. ;
Siah, Ahmed ;
Powell, James F. F. ;
Kamaitis, Mykolas .
JOURNAL OF FISH DISEASES, 2019, 42 (02) :303-313
[34]   STARD-BLCM: Standards for the Reporting of Diagnostic accuracy studies that use Bayesian Latent Class Models [J].
Kostoulas, Polychronis ;
Nielsen, Soren S. ;
Branscum, Adam J. ;
Johnson, Wesley O. ;
Dendukuri, Nandini ;
Dhand, Navneet K. ;
Toft, Nils ;
Gardner, Ian A. .
PREVENTIVE VETERINARY MEDICINE, 2017, 138 :37-47
[35]   Bayesian latent class model estimates of diagnostic accuracy for three test methods designed to detect spring viremia of carp virus [J].
Clouthier, Sharon C. ;
McClure, Carol ;
Schroeder, Tamara ;
Anderson, Eric D. .
PREVENTIVE VETERINARY MEDICINE, 2021, 190
[36]   Bayesian latent class estimation of sensitivity and specificity parameters of diagnostic tests for bovine tuberculosis in chronically infected herds in Northern Ireland [J].
Lahuerta-Marin, A. ;
Milne, M. G. ;
McNair, J. ;
Skuce, R. A. ;
McBride, S. H. ;
Menzies, F. D. ;
McDowell, S. J. W. ;
Byrne, A. W. ;
Handel, I. G. ;
Bronsvoort, B. M. de C. .
VETERINARY JOURNAL, 2018, 238 :15-21
[37]   Diagnostic Accuracy of T-SPOT.TB Assay for Tuberculous Meningitis: An Updated Meta-Analysis [J].
Luo, Ying ;
Xue, Ying ;
Guo, Xueyun ;
Lin, Qun ;
Mao, Liyan ;
Tang, Guoxing ;
Song, Huijuan ;
Wang, Feng ;
Sun, Ziyong .
FRONTIERS IN NEUROLOGY, 2020, 11
[38]   Estimating prevalence and test accuracy in disease ecology: How Bayesian latent class analysis can boost or bias imperfect test results [J].
Helman, Sarah K. ;
Mummah, Riley O. ;
Gostic, Katelyn M. ;
Buhnerkempe, Michael G. ;
Prager, Katherine C. ;
Lloyd-Smith, James O. .
ECOLOGY AND EVOLUTION, 2020, 10 (14) :7221-7232
[39]   Assessment of the accuracy of 11 different diagnostic tests for the detection of Schistosomiasis mansoni in individuals from a Brazilian area of low endemicity using latent class analysis [J].
Mesquita, Silvia Goncalves ;
Caldeira, Roberta Lima ;
Favre, Tereza Cristina ;
Massara, Cristiano Lara ;
Beck, Lilian Christina Nobrega Holsbach ;
Simoes, Taynana Cesar ;
de Carvalho, Gardenia Braz Figueiredo ;
Neves, Floria Gabriela dos Santos ;
de Oliveira, Gabriela ;
Lacerda, Larisse de Souza Barbosa ;
de Almeida, Matheus Alves ;
Carvalho, Omar dos Santos ;
Moraes Mourao, Marina ;
Oliveira, Edward ;
Silva-Pereira, Rosiane A. ;
Fonseca, Cristina Toscano .
FRONTIERS IN MICROBIOLOGY, 2022, 13
[40]   Comparing four diagnostic tests for Giardia duodenalis in dogs using latent class analysis [J].
Uiterwijk, Mathilde ;
Nijsse, Rolf ;
Kooyman, Frans N. J. ;
Wagenaar, Jaap A. ;
Mughini-Gras, Lapo ;
Koop, Gerrit ;
Ploeger, Harm W. .
PARASITES & VECTORS, 2018, 11