The accuracy of tuberculous meningitis diagnostic tests using Bayesian latent class analysis

被引:5
作者
Huy Ngoc Le [1 ]
Sriplung, Hutcha [2 ]
Chongsuvivatwong, Virasakdi [2 ]
Nhung Viet Nguyen [1 ]
Tri Huu Nguyen [1 ]
机构
[1] Vietnam Natl Lung Hosp, Hanoi, Vietnam
[2] Prince Songkla Univ, Epidemiol Unit, 15 Kanchanawanit Rd, Hat Yai 90110, Songkhla, Thailand
来源
JOURNAL OF INFECTION IN DEVELOPING COUNTRIES | 2020年 / 14卷 / 05期
关键词
Tuberculous meningitis; Gene Xpert assay; Bayesian latent class analysis; IMPERFECT REFERENCE TESTS; XPERT MTB/RIF ASSAY; CEREBROSPINAL-FLUID; GENEXPERT MTB/RIF; GOLD; SPECIFICITY; SENSITIVITY; VALIDATION; STANDARDS; ADULTS;
D O I
10.3855/jidc.11862
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Introduction: Tuberculous meningitis (TBM) is the most dangerous form of tuberculosis with high mortality and disability rates. However, the delayed diagnostic process is often due to the absence of the gold standard tests leading to a lack of information about the sensitivity and specificity of diagnostic tests. This study aims to estimate the prevalence of 'IBM and determine the performance of four diagnostic procedures: the mycobacteria growth culture test, Gene Xpert assay, and analysis of protein levels and leukocyte count taken from cerebrospinal fluid. Methodology: We used a Bayesian latent class analysis to estimate the prevalence of TBM with 95% credible interval (CI), and the specificity and sensitivity of the four diagnostic procedures. The area under the receiver operating characteristic curve (AUC) of the cerebrospinal protein levels and leukocyte count were also compared and estimated using different thresholds. Results: A total of 1,213 patients suspected of having TBM were included. The estimated TBM prevalence was 34.8 % (95% CI: 28.8 - 41.3). The sensitivity of culture test and Gene Xpert assay was 62.7% (95% CI: 52.5 - 74.0), and 57.5% (95% CI: 51.0 - 64.0), and the specificity of Gene-Xpert was 95. 9% (95% CI: 92.0 - 99.8). The AUC for leukocyte count was 76.0%, and for protein level was 73.4%. Conclusions: This study provided better information about the performance of four routine diagnostic tests and the prevalence of TBM which can enhance disease control and improve treatment outcomes.
引用
收藏
页码:479 / 487
页数:9
相关论文
共 50 条
[1]   A novel diagnostic model for tuberculous meningitis using Bayesian latent class analysis [J].
Trinh Huu Khanh Dong ;
Joseph Donovan ;
Nghiem My Ngoc ;
Do Dang Anh Thu ;
Ho Dang Trung Nghia ;
Pham Kieu Nguyet Oanh ;
Nguyen Hoan Phu ;
Vu Thi Ty Hang ;
Nguyen Van Vinh Chau ;
Nguyen Thuy Thuong Thuong ;
Le Van Tan ;
Guy E. Thwaites ;
Ronald B. Geskus .
BMC Infectious Diseases, 24
[2]   A novel diagnostic model for tuberculous meningitis using Bayesian latent class analysis [J].
Dong, Trinh Huu Khanh ;
Donovan, Joseph ;
Ngoc, Nghiem My ;
Thu, Do Dang Anh ;
Nghia, Ho Dang Trung ;
Oanh, Pham Kieu Nguyet ;
Phu, Nguyen Hoan ;
Hang, Vu Thi Ty ;
Chau, Nguyen Van Vinh ;
Thuong, Nguyen Thuy Thuong ;
Tan, Le Van ;
Thwaites, Guy E. ;
Geskus, Ronald B. .
BMC INFECTIOUS DISEASES, 2024, 24 (01)
[3]   A Systematic Review and Meta-analysis of the Diagnostic Accuracy of Nucleic Acid Amplification Tests for Tuberculous Meningitis [J].
Pormohammad, Ali ;
Nasiri, Mohammad Javad ;
McHugh, Timothy D. ;
Riahi, Seyed Mohammad ;
Bahr, Nathan C. .
JOURNAL OF CLINICAL MICROBIOLOGY, 2019, 57 (06)
[4]   Bayesian Estimation of Diagnostic Accuracy of Three Diagnostic Tests for Bovine Tuberculosis in Egyptian Dairy Cattle Using Latent Class Models [J].
Elsohaby, Ibrahim ;
Alahadeb, Jawher, I ;
Mahmmod, Yasser S. ;
Mweu, Marshal M. ;
Ahmed, Heba A. ;
El-Diasty, Mohamed M. ;
Elgedawy, Attia A. ;
Mahrous, Eman ;
El Hofy, Fatma, I .
VETERINARY SCIENCES, 2021, 8 (11)
[5]   Estimating the True Accuracy of Diagnostic Tests for Dengue Infection Using Bayesian Latent Class Models [J].
Pan-ngum, Wirichada ;
Blacksell, Stuart D. ;
Lubell, Yoel ;
Pukrittayakamee, Sasithon ;
Bailey, Mark S. ;
de Silva, H. Janaka ;
Lalloo, David G. ;
Day, Nicholas P. J. ;
White, Lisa J. ;
Limmathurotsakul, Direk .
PLOS ONE, 2013, 8 (01)
[6]   Diagnostic Test Accuracy in Childhood Pulmonary Tuberculosis: A Bayesian Latent Class Analysis [J].
Schumacher, Samuel G. ;
van Smeden, Maarten ;
Dendukuri, Nandini ;
Joseph, Lawrence ;
Nicol, Mark P. ;
Pai, Madhukar ;
Zar, Heather J. .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2016, 184 (09) :690-700
[7]   Reevaluating the true diagnostic accuracy of dipstick tests to diagnose urinary tract infection using Bayesian latent class analysis [J].
Bafna, Prashant ;
Deepanjali, Surendran ;
Mandal, Jharna ;
Balamurugan, Nathan ;
Swaminathan, Rathinam P. ;
Kadhiravan, Tamilarasu .
PLOS ONE, 2020, 15 (12)
[8]   Random effects models in latent class analysis for evaluating accuracy of diagnostic tests [J].
Qu, YS ;
Tan, M ;
Kutner, MH .
BIOMETRICS, 1996, 52 (03) :797-810
[9]   Bayesian hierarchical latent class models for estimating diagnostic accuracy [J].
Wang, Chunling ;
Lin, Xiaoyan ;
Nelson, Kerrie P. .
STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (04) :1112-1128
[10]   Evaluation of three serological tests for the diagnosis of Brucella suis in dogs using Bayesian latent class analysis [J].
Kneipp, Catherine C. ;
Coilparampil, Ronald ;
Westman, Mark ;
Suann, Monica ;
Robson, Jennifer ;
Firestone, Simon M. ;
Malik, Richard ;
Mor, Siobhan M. ;
Stevenson, Mark A. ;
Wiethoelter, Anke K. .
PREVENTIVE VETERINARY MEDICINE, 2024, 233