Effect of grain size on strength and strain rate sensitivity in the CrMnFeCoNi high-entropy alloy

被引:24
|
作者
Figueiredo, Roberto B. [1 ]
Wolf, Witor [1 ]
Langdon, Terence G. [2 ]
机构
[1] Univ Fed Minas Gerais, Dept Met & Mat Engn, BR-31270901 Belo Horizonte, MG, Brazil
[2] Univ Southampton, Dept Mech Engn, Mat Res Grp, Southampton SO17 1BJ, England
基金
欧洲研究理事会;
关键词
CrMnCoFeNi alloy; Deformation mechanisms; Strain rate sensitivity; Strength; Ultrafine grains; DEFORMATION-BEHAVIOR; COCRFEMNNI; DUCTILITY; FLOW;
D O I
10.1016/j.jmrt.2022.07.181
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
It was shown recently that the grain size contribution to the flow stress and strain rate sensitivity of pure metals having different structures can be estimated by a model of deformation for grain boundary sliding. The present research extends this earlier study by estimating the grain size contribution to the flow stress in the CrMnCoFeNi high entropy alloy. This alloy has attracted significant attention in recent years due to its remarkable mechanical properties which include a higher strength compared to f.c.c. pure metals due to a significant contribution from solid solution strengthening. The present work demonstrates that the flow stress of the CrMnCoFeNi alloy can be readily estimated from the sum of the contributions from solid solution and grain size strengthening. There are some unique experimental trends observed in this alloy and these provide supporting evidence for the assumption that the grain size strengthening is thermally-activated. The flow stress, strain rate sensitivity, activation volume and activation energy are predicted for different grain sizes and testing conditions as a function of the fundamental properties of this alloy and the results show excellent agreement with the reported experimental data. (c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:2358 / 2368
页数:11
相关论文
共 50 条
  • [41] Effect of nitrogen addition on sintering behavior of high-entropy alloy CrMnFeCoNi powder
    Fujita, Keisuke
    Matsuura, Hidenori
    Kawaguchi, Takahiko
    Kikuchi, Shoichi
    MATERIALS LETTERS, 2024, 367
  • [42] Effect of rolling and annealing temperature on the mechanical properties of CrMnFeCoNi high-entropy alloy
    Schmidt, Sebastian
    Sathiaraj, G. Dan
    Kumar, S. Satheesh
    Sulkowski, Bartosz
    Suwas, Satyam
    Jaschinski, Joern
    Pukenas, Aurimas
    Gu, Bin
    Skrotzki, Werner
    MATERIALS CHEMISTRY AND PHYSICS, 2021, 270
  • [43] Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi
    ZiJiao Zhang
    M. M. Mao
    Jiangwei Wang
    Bernd Gludovatz
    Ze Zhang
    Scott X. Mao
    Easo P. George
    Qian Yu
    Robert O. Ritchie
    Nature Communications, 6
  • [44] Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi
    Zhang, ZiJiao
    Mao, M. M.
    Wang, Jiangwei
    Gludovatz, Bernd
    Zhang, Ze
    Mao, Scott X.
    George, Easo P.
    Yu, Qian
    Ritchie, Robert O.
    NATURE COMMUNICATIONS, 2015, 6
  • [45] Effect of grain size on strain rate sensitivity of cryomilled Al–Mg alloy
    Byungmin Ahn
    Rahul Mitra
    Enrique J. Lavernia
    Steven R. Nutt
    Journal of Materials Science, 2010, 45 : 4790 - 4795
  • [46] Processing, Microstructure and Mechanical Properties of the CrMnFeCoNi High-Entropy Alloy
    Gludovatz, Bernd
    George, Easo P.
    Ritchie, Robert O.
    JOM, 2015, 67 (10) : 2262 - 2270
  • [47] The effects of irradiation on CrMnFeCoNi high-entropy alloy and its derivatives
    Zhang, Zhouran
    Armstrong, David E. J.
    Grant, Patrick S.
    PROGRESS IN MATERIALS SCIENCE, 2022, 123
  • [48] Effect of Strain Rate on Deformation Behavior of AlCoCrFeNi High-Entropy Alloy by Nanoindentation
    Tian, L.
    Jiao, Z. M.
    Yuan, G. Z.
    Ma, S. G.
    Wang, Z. H.
    Yang, H. J.
    Zhang, Y.
    Qiao, J. W.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2016, 25 (06) : 2255 - 2260
  • [49] Effect of Strain Rate on Deformation Behavior of AlCoCrFeNi High-Entropy Alloy by Nanoindentation
    L. Tian
    Z. M. Jiao
    G. Z. Yuan
    S. G. Ma
    Z. H. Wang
    H. J. Yang
    Y. Zhang
    J. W. Qiao
    Journal of Materials Engineering and Performance, 2016, 25 : 2255 - 2260
  • [50] Ballistic penetration of high-entropy CrMnFeCoNi alloy: Experiments and modelling
    Liu, Q.
    Hua, J. Y.
    Xu, Y. F.
    Yang, K.
    Cheng, J. C.
    Zhang, N. B.
    Li, C.
    Cai, Y.
    Luo, S. N.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2023, 249