Digitized-counterdiabatic quantum approximate optimization algorithm

被引:54
作者
Chandarana, P. [1 ]
Hegade, N. N. [2 ,3 ]
Paul, K. [2 ,3 ]
Albarran-Arriagada, F. [2 ,3 ]
Solano, E. [1 ,2 ,3 ,4 ,5 ]
del Campo, A. [6 ,7 ]
Chen, Xi [1 ]
机构
[1] Univ Basque Country, UPV EHU, Dept Phys Chem, Apartado 644, Bilbao 48080, Spain
[2] Shanghai Univ, Int Ctr Quantum Artificial Intelligence Sci & Tec, Shanghai 200444, Peoples R China
[3] Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China
[4] IKERBASQUE, Basque Fdn Sci, Plaza Euskadi 5, Bilbao 48009, Spain
[5] Kipu Quantum, Kurwenalstr 1, D-80804 Munich, Germany
[6] Univ Luxembourg, Dept Phys & Mat Sci, L-1511 Luxembourg, Luxembourg
[7] Donostia Int Phys Ctr, E-20018 San Sebastian, Spain
来源
PHYSICAL REVIEW RESEARCH | 2022年 / 4卷 / 01期
关键词
MODEL;
D O I
10.1103/PhysRevResearch.4.013141
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum approximate optimization algorithm (QAOA) has proved to be an effective classical-quantum algorithm serving multiple purposes, from solving combinatorial optimization problems to finding the ground state of many-body quantum systems. Since the QAOA is an Ansatz-dependent algorithm, there is always a need to design Ansatze for better optimization. To this end, we propose a digitized version of the QAOA enhanced via the use of shortcuts to adiabaticity. Specifically, we use a counterdiabatic (CD) driving term to design a better Ansatz, along with the Hamiltonian and mixing terms, enhancing the global performance. We apply our digitized-CD QAOA to Ising models, classical optimization problems, and the P-spin model, demonstrating that it outperforms the standard QAOA in all cases we study.
引用
收藏
页数:9
相关论文
共 89 条
  • [1] Anschuetz E.R., ARXIV180808927
  • [2] Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions
    Barkoutsos, Panagiotis Kl
    Gonthier, Jerome F.
    Sokolov, Igor
    Moll, Nikolaj
    Salis, Gian
    Fuhrer, Andreas
    Ganzhorn, Marc
    Egger, Daniel J.
    Troyer, Matthias
    Mezzacapo, Antonio
    Filipp, Stefan
    Tavernelli, Ivano
    [J]. PHYSICAL REVIEW A, 2018, 98 (02)
  • [3] Transitionless quantum driving
    Berry, M. V.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (36)
  • [4] Bharti K., ARXIV210108448
  • [5] SPIN-GLASSES - EXPERIMENTAL FACTS, THEORETICAL CONCEPTS, AND OPEN QUESTIONS
    BINDER, K
    YOUNG, AP
    [J]. REVIEWS OF MODERN PHYSICS, 1986, 58 (04) : 801 - 976
  • [6] Bravo-Prieto C., ARXIV190905820
  • [7] Scaling of variational quantum circuit depth for condensed matter systems
    Bravo-Prieto, Carlos
    Lumbreras-Zarapico, Josep
    Tagliacozzo, Luca
    Latorre, Jose, I
    [J]. QUANTUM, 2020, 4
  • [8] HISTORY OF LENZ-ISING MODEL
    BRUSH, SG
    [J]. REVIEWS OF MODERN PHYSICS, 1967, 39 (04) : 883 - +
  • [9] Strategies for solving the Fermi-Hubbard model on near-term quantum computers
    Cade, Chris
    Mineh, Lana
    Montanaro, Ashley
    Stanisic, Stasja
    [J]. PHYSICAL REVIEW B, 2020, 102 (23)
  • [10] Adiabatic quantum dynamics of a random Ising chain across its quantum critical point
    Caneva, Tommaso
    Fazio, Rosario
    Santoro, Giuseppe E.
    [J]. PHYSICAL REVIEW B, 2007, 76 (14)