Tunable Fabry-Perot filter using hollow-core photonic bandgap fiber and micro-fiber for a narrow-linewidth laser

被引:16
作者
Wang, Xiaozhen [1 ]
Zhu, Tao [1 ,2 ]
Chen, Liang [1 ]
Bao, Xiaoyi [1 ]
机构
[1] Univ Ottawa, Dept Phys, Fiber Opt Grp, Ottawa, ON K1N 6N5, Canada
[2] Chongqing Univ, Key Lab Optoelect Technol & Syst, Minist Educ, Chongqing 400044, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
RING LASER; MODE OPERATION; CRYSTAL FIBER; TEMPERATURE; SENSOR; ETALON;
D O I
10.1364/OE.19.009617
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A novel tunable fiber Fabry-Perot (FP) filter is proposed and demonstrated by using a hollow-core photonic bandgap fiber (HC-PBF) and a micro-fiber. The interference cavity is a hollow core of HC-PBF. One of the reflection mirrors is the splicing point between a section of HC-PBF and a single mode fiber. The other reflection mirror is a gold-coated end of micro-fiber that uses chemical etching process to obtain the similar diameter as the core of HC-PBF. Hence the movable mirror can be adjusted with long distance inside the hollow core of HC-PBF. Tunable FP filter is used as a mode selecting component in the reflection mode to implement stable single longitudinal mode (SLM) operation in a ring laser. With FP cavity length of 0.25 +/- 0.14 mm, the wavelength of SLM laser can be tuned over 1554-1562 nm with a tuning step of 0.2-0.3 nm, a side-mode suppression ratio (SMSR) of 32-36 dB and a linewidth of 3.0-5.1 kHz. With FP cavity length of 2.37 +/- 0.37 mm, the SLM laser can be tuned over 1557.3-1560.2 nm with a tuning step of 0.06-0.1 nm, a SMSR of 44-51 dB and a linewidth of 1.8-3.0 kHz. (C) 2011 Optical Society of America
引用
收藏
页码:9617 / 9625
页数:9
相关论文
共 21 条
[1]  
[Anonymous], 1998, Fiber optic test and measurement
[2]   Single-longitudinal-mode erbium-doped fiber laser based on a fiber Bragg grating Fabry-Perot filter [J].
Chen, D. ;
Fu, H. ;
Liu, W. .
LASER PHYSICS, 2007, 17 (10) :1246-1248
[3]   Single-longitudinal-mode erbium-doped fiber ring laser based on high finesse fiber Bragg grating Fabry-Perot etalon [J].
Cheng, X. P. ;
Shum, P. ;
Tse, C. H. ;
Zhou, J. L. ;
Tang, M. ;
Tan, W. C. ;
Wu, R. F. ;
Zhang, J. .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2008, 20 (9-12) :976-978
[4]   Vibration: history and measurement with an extrinsic Fabry-Perot sensor with solid-state laser interferometry [J].
Gangopadhyay, TK ;
Henderson, PJ .
APPLIED OPTICS, 1999, 38 (12) :2471-2477
[5]  
*HC, HC1550
[6]   Intrinsic Fabry-Perot fiber sensor for temperature and strain measurements [J].
Huang, ZY ;
Zhu, YZ ;
Chen, XP ;
Wang, AB .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17 (11) :2403-2405
[7]   Refractometry based on a photonic crystal fiber interferometer [J].
Jha, Rajan ;
Villatoro, Joel ;
Badenes, Goncal ;
Pruneri, Valerio .
OPTICS LETTERS, 2009, 34 (05) :617-619
[8]   Single-longitudinal-mode fiber laser with a passive multiple-ring cavity and its application for video transmission [J].
Lee, CC ;
Chen, YK ;
Liaw, SK .
OPTICS LETTERS, 1998, 23 (05) :358-360
[9]   Single-longitudinal-mode multiwavelength fiber ring laser [J].
Liu, J ;
Yao, JP ;
Yao, J ;
Yeap, TH .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2004, 16 (04) :1020-1022
[10]   A Wavelength-Tunable Single-Longitudinal-Mode Fiber Ring Laser With a Large Sidemode Suppression and Improved Stability [J].
Pan, Shilong ;
Yao, Jianping .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2010, 22 (06) :413-415