Neural Network-Based Undersampling Techniques

被引:32
|
作者
Arefeen, Md Adnan [1 ,2 ]
Nimi, Sumaiya Tabassum [1 ,2 ]
Rahman, M. Sohel [3 ]
机构
[1] Univ Missouri, Dept Comp Sci Elect Engn, Kansas City, MO 64110 USA
[2] United Int Univ, Dept Comp Sci & Engn, Dhaka 1209, Bangladesh
[3] Bangladesh Univ Engn & Technol, Dept Comp Sci & Engn, Dhaka 1205, Bangladesh
来源
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS | 2022年 / 52卷 / 02期
关键词
Task analysis; Noise measurement; Neurons; Machine learning algorithms; Computer science; Genetic algorithms; Autoencoder; class imbalance; classification; neural network; undersampling; CLASSIFICATION; IMBALANCE; FRAUD; SMOTE;
D O I
10.1109/TSMC.2020.3016283
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Machine learning models have gained popularity nowadays for their potential to solve real-life issues when trained on pertinent data. In many cases, the real-life data are class imbalanced and hence the corresponding machine learning models trained on the data tend to perform poorly on metrics like precision, recall, AUC, F1, and G-mean score. Since class imbalance issue poses serious challenges to the performance of trained models, a multitude of research works have addressed this issue. Two common data-based sampling techniques have mostly been proposed-undersampling the data of the majority class and oversampling the data of the minority class. In this article, we focus on the former approach. We propose two novel algorithms that employ neural network-based approaches to remove majority samples that are found to reside in the vicinity of the minority samples, thereby undersampling the former to remove (or alleviate) the imbalance issue. We delineate the proposed algorithms and then test the proposed algorithms on some publicly available imbalanced datasets. We then compare the performance of our proposed algorithms to other popular undersampling algorithms. Finally, we conclude that our proposed algorithms outperform most of the existing undersampling approaches on most performance metrics.
引用
收藏
页码:1111 / 1120
页数:10
相关论文
共 50 条
  • [31] A spiking neural network-based approach to bearing fault diagnosis
    Zuo, Lin
    Zhang, Lei
    Zhang, Zhe-Han
    Luo, Xiao-Ling
    Liu, Yu
    JOURNAL OF MANUFACTURING SYSTEMS, 2021, 61 : 714 - 724
  • [32] A New Convolutional Neural Network-Based System for NILM Applications
    Ciancetta, Fabrizio
    Bucci, Giovanni
    Fiorucci, Edoardo
    Mari, Simone
    Fioravanti, Andrea
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70 (70)
  • [33] Convolutional Neural Network-Based Tire Pressure Monitoring System
    Marton, Zoltan
    Szalay, Istvan
    Fodor, Denes
    IEEE ACCESS, 2023, 11 : 70317 - 70332
  • [34] Convolutional neural network-based models for diagnosis of breast cancer
    Masud, Mehedi
    Rashed, Amr E. Eldin
    Hossain, M. Shamim
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (14) : 11383 - 11394
  • [35] A Neural Network-Based Ensemble Approach for Spam Detection in Twitter
    Madisetty, Sreekanth
    Desarkar, Maunendra Sankar
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2018, 5 (04): : 973 - 984
  • [36] Partial Adversarial Training for Neural Network-Based Uncertainty Quantification
    Kabir, H. M. Dipu
    Khosravi, Abbas
    Nahavandi, Saeid
    Kavousi-Fard, Abdollah
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2021, 5 (04): : 595 - 606
  • [37] Weightless Neural Network-Based Fault Diagnosis in Suspension System
    Shah, Ronit
    Venkatesh, S. Naveen
    Balaji, P. Arun
    Sugumaran, V
    FME TRANSACTIONS, 2024, 52 (01): : 115 - 127
  • [38] Neural network-based estimation of biomechanical vocal fold parameters
    Donhauser, Jonas
    Tur, Bogac
    Doellinger, Michael
    FRONTIERS IN PHYSIOLOGY, 2024, 15
  • [39] Deep Recurrent Neural Network-Based Identification of Precursor microRNAs
    Park, Seunghyun
    Min, Seonwoo
    Choi, Hyun-Soo
    Yoon, Sungroh
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [40] A deep neural network-based approach for prediction of mutagenicity of compounds
    Kumar, Rajnish
    Khan, Farhat Ullah
    Sharma, Anju
    Siddiqui, Mohammed Haris
    Aziz, Izzatdin B. A.
    Kamal, Mohammad Amjad
    Ashraf, Ghulam Md
    Alghamdi, Badrah S.
    Uddin, Md Sahab
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (34) : 47641 - 47650