Modules of constant Jordan type

被引:45
作者
Carlson, Jon F. [1 ]
Friedlander, Eric M. [2 ]
Pevtsova, Julia [3 ]
机构
[1] Univ Georgia, Dept Math, Athens, GA 30602 USA
[2] Northwestern Univ, Dept Math, Evanston, IL USA
[3] Univ Washington, Dept Math, Seattle, WA 98195 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2008年 / 614卷
基金
美国国家科学基金会;
关键词
D O I
10.1515/CRELLE.2008.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the class of modules of constant Jordan type for a finite group scheme G over a field k of characteristic p > 0. This class is closed under taking direct sums, tensor products, duals, Heller shifts and direct summands, and includes endotrivial modules. It contains all modules in an Auslander-Reiten component which has at least one module in the class. Highly non-trivial examples are constructed using cohomological techniques. We offer conjectures suggesting that there are strong conditions on a partition to be the Jordan type associated to a module of constant Jordan type.
引用
收藏
页码:191 / 234
页数:44
相关论文
共 30 条
[1]   REPRESENTATIONS OF RANK ONE LIE-ALGEBRAS OF CHARACTERISTIC-P [J].
BENKART, GM ;
OSBORN, JM .
LECTURE NOTES IN MATHEMATICS, 1982, 933 :1-37
[2]  
Benson D., 1991, REPRESENTATIONS COHO, VI
[3]   PRODUCTS IN NEGATIVE COHOMOLOGY [J].
BENSON, DJ ;
CARLSON, JF .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1992, 82 (02) :107-129
[4]  
BERKSON J, 1964, P AM MATH SOC, V15, P14
[5]  
Carlson J., 2000, ALGEBR REPRESENT TH, V3, P303
[6]  
Carlson J. F., 2003, Cohomology Rings of Finite Groups
[7]   THE VARIETIES AND THE CO-HOMOLOGY RING OF A MODULE [J].
CARLSON, JF .
JOURNAL OF ALGEBRA, 1983, 85 (01) :104-143
[8]   The classification of endo-trivial modules [J].
Carlson, JF ;
Thévenaz, J .
INVENTIONES MATHEMATICAE, 2004, 158 (02) :389-411
[9]   THE VARIETY OF AN INDECOMPOSABLE MODULE IS CONNECTED [J].
CARLSON, JF .
INVENTIONES MATHEMATICAE, 1984, 77 (02) :291-299
[10]   ENDO-PERMUTATION MODULES OVER P-GROUPS-II [J].
DADE, EC .
ANNALS OF MATHEMATICS, 1978, 108 (02) :317-346