On some recent advances in shape optimization

被引:29
作者
Allaire, G [1 ]
Henrot, A
机构
[1] Ecole Polytech, Ctr Math Appl, F-91128 Palaiseau, France
[2] Ecole Mines, F-54506 Vandoeuvre Nancy, France
[3] Inst Elie Cartan, F-54506 Vandoeuvre Nancy, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE | 2001年 / 329卷 / 05期
关键词
solids and structures; shape optimization; existence of optimal shapes; domain derivative; relaxation; topology optimization;
D O I
10.1016/S1620-7742(01)01349-6
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this Note we give a short review on recent developements in shape optimization. We explain how the generic non-existence of solutions can be circumvent. Either one can impose some geometric restrictions on the class of admissible domains to get existence (we then explain how to write the usual optimality conditions), or generalized designs are allowed which leads to relaxation by homogenization techniques (we thus obtain topology optimization methods). (C) 2001 Academie des sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:383 / 396
页数:14
相关论文
共 40 条
[1]  
ALLAIRE G, 1993, EUR J MECH A-SOLID, V12, P839
[2]   Shape optimization by the homogenization method [J].
Allaire, G ;
Bonnetier, E ;
Francfort, G ;
Jouve, F .
NUMERISCHE MATHEMATIK, 1997, 76 (01) :27-68
[3]  
ALLAIRE G, 2001, IN PRESS SHAPE OPTIM
[4]   AN OPTIMAL-DESIGN PROBLEM WITH PERIMETER PENALIZATION [J].
AMBROSIO, L ;
BUTTAZZO, G .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 1993, 1 (01) :55-69
[5]  
[Anonymous], 1971, OPTIMAL CONTROL SYST
[6]  
[Anonymous], 1969, LECT CALCULUS VARIAT
[7]  
[Anonymous], 1992, SPRINGER SERIES COMP
[8]  
[Anonymous], WEAKLY DIFFERENTIABL
[9]  
ARMAND JL, 1983, OPTIMUM STRUCTURE DE, V2
[10]  
Bendsoe M., 1995, METHODS OPTIMIZATION