Galois-equivariant McKay bijections for primes dividing q-1

被引:3
作者
Schaeffer Fry, A. A. [1 ]
机构
[1] Metropolitan State Univ Denver, Dept Math & Stat, Denver, CO 80217 USA
基金
美国国家科学基金会;
关键词
NORMALIZING SYLOW 2-SUBGROUPS; FINITE-GROUPS; ODD-DEGREE; CONJECTURE; REPRESENTATIONS; CHARACTERS; REDUCTION;
D O I
10.1007/s11856-021-2266-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for most groups of Lie type, the bijections used by Malle and Spath in the proof of Isaacs-Malle-Navarro's inductive McKay conditions for the prime 2 and odd primes dividing q - 1 are also equivariant with respect to certain Galois automorphisms. In particular, this shows that these bijections are candidates for proving Navarro-Spath-Vallejo's recently-posited inductive Galois-McKay conditions. On the way, we show that several simple groups of Lie type satisfy the McKay-Navarro conjecture for the prime 2.
引用
收藏
页码:269 / 302
页数:34
相关论文
共 35 条
[11]  
Geck M, 2020, CAM ST AD M, V187, P1, DOI 10.1017/9781108779081
[12]  
Geck M., 2000, CHARACTERS FINITE CO
[13]   PRINCIPAL SERIES REPRESENTATIONS OF FINITE-GROUPS WITH SPLIT BN PAIRS [J].
HOWLETT, RB ;
KILMOYER, RW .
COMMUNICATIONS IN ALGEBRA, 1980, 8 (06) :543-583
[14]   INDUCED CUSPIDAL REPRESENTATIONS AND GENERALIZED HECKE RINGS [J].
HOWLETT, RB ;
LEHRER, GI .
INVENTIONES MATHEMATICAE, 1980, 58 (01) :37-64
[15]   REPRESENTATIONS OF GENERIC-ALGEBRAS AND FINITE-GROUPS OF LIE TYPE [J].
HOWLETT, RB ;
LEHRER, GI .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 280 (02) :753-779
[16]   A reduction theorem for the McKay conjecture [J].
Isaacs, I. M. ;
Malle, Gunter ;
Navarro, Gabriel .
INVENTIONES MATHEMATICAE, 2007, 170 (01) :33-101
[17]  
Isaacs I.M., 2006, CHARACTER THEORY FIN
[18]   Normalizers of the Sylow 2-subgroups in finite simple groups [J].
Kondrat'ev, AS .
MATHEMATICAL NOTES, 2005, 78 (3-4) :338-346
[19]  
Lubeck F., DATA FINITE GROUPS L
[20]  
Lusztig, 1984, CHARACTERS REDUCTIVE, DOI [10.1515/9781400881772, DOI 10.1515/9781400881772]