Galois-equivariant McKay bijections for primes dividing q-1

被引:3
作者
Schaeffer Fry, A. A. [1 ]
机构
[1] Metropolitan State Univ Denver, Dept Math & Stat, Denver, CO 80217 USA
基金
美国国家科学基金会;
关键词
NORMALIZING SYLOW 2-SUBGROUPS; FINITE-GROUPS; ODD-DEGREE; CONJECTURE; REPRESENTATIONS; CHARACTERS; REDUCTION;
D O I
10.1007/s11856-021-2266-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for most groups of Lie type, the bijections used by Malle and Spath in the proof of Isaacs-Malle-Navarro's inductive McKay conditions for the prime 2 and odd primes dividing q - 1 are also equivariant with respect to certain Galois automorphisms. In particular, this shows that these bijections are candidates for proving Navarro-Spath-Vallejo's recently-posited inductive Galois-McKay conditions. On the way, we show that several simple groups of Lie type satisfy the McKay-Navarro conjecture for the prime 2.
引用
收藏
页码:269 / 302
页数:34
相关论文
共 35 条
[1]  
Bonnafe C, 2006, ASTERISQUE, V306
[2]   Equivariance and extendibility in finite reductive groups with connected center [J].
Cabanes, Marc ;
Spaeth, Britta .
MATHEMATISCHE ZEITSCHRIFT, 2013, 275 (3-4) :689-713
[3]  
Carter R. W., 1993, FINITE GROUPS LIE TY
[4]  
CURTIS CW, 1962, REPRESENTATION THEOR
[5]   CHARACTER TABLE AND BLOCKS OF FINITE SIMPLE TRIALITY GROUPS 3D4(Q) [J].
DERIZIOTIS, DI ;
MICHLER, GO .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 303 (01) :39-70
[6]  
Digne F., 1991, Representations of Finite Groups of Lie Type, V21, DOI DOI 10.1017/CBO9781139172417
[7]   GALOIS AUTOMORPHISMS ON HARISH-CHANDRA SERIES AND NAVARRO'S SELF-NORMALIZING SYLOW 2-SUBGROUP CONJECTURE [J].
Fry, A. A. Schaeffer .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (01) :457-483
[8]  
Fry AAS, 2018, J LIE THEORY, V28, P139
[9]   ODD-DEGREE CHARACTERS AND SELF-NORMALIZING SYLOW 2-SUBGROUPS: A REDUCTION TO SIMPLE GROUPS [J].
Fry, Amanda A. Schaeffer .
COMMUNICATIONS IN ALGEBRA, 2016, 44 (05) :1882-1904
[10]   A NOTE ON HARISH-CHANDRA INDUCTION [J].
GECK, M .
MANUSCRIPTA MATHEMATICA, 1993, 80 (04) :393-401