A prognostic phenology model for alpine meadows on the Qinghai-Tibetan Plateau

被引:11
|
作者
Sun, Qingling [1 ,2 ]
Li, Baolin [1 ,2 ,3 ]
Yuan, Yecheng [1 ]
Jiang, Yuhao [1 ,2 ]
Zhang, Tao [1 ,2 ]
Gao, Xizhang [1 ]
Ge, Jinsong [4 ]
Li, Fei [4 ]
Zhang, Zhijun [4 ]
机构
[1] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Jiangsu Ctr Collaborat Innovat Geog Informat Reso, Nanjing 210023, Jiangsu, Peoples R China
[4] Qinghai Remote Sensing Monitoring Ctr Ecol & Envi, Xining 810007, Qinghai, Peoples R China
关键词
Phenology model; Alpine meadow; Qinghai-Tibetan Plateau; Growing Season Index; Climatic factor; DELAYED SPRING PHENOLOGY; VEGETATION PHENOLOGY; AUTUMN PHENOLOGY; CLIMATE-CHANGE; SNOW COVER; GREEN-UP; RESPONSES; WINTER; TEMPERATURE; SENESCENCE;
D O I
10.1016/j.ecolind.2018.05.061
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Phenology models are useful tools to study phenology shifts and their responses to climate change. Multiple factors including temperature, precipitation, photoperiod, insolation, and snow can affect the phenology of alpine grasslands on the Qinghai-Tibetan Plateau (QTP), but most models applied on the QTP have only considered the influences of temperature or temperature and precipitation. This study presents a multi-factor-driven phenology model, the Alpine Meadow Prognostic Phenology (AMPP) model, based on the Growing Season Index (GSI), to predict both leaf onset and offset dates of QTP alpine meadows at the community scale. Five factors including daily minimum air temperature, precipitation averaged over the previous month, photoperiod, global solar radiation, and snowfall were combined into an integrated index, the Alpine Meadow Growing Season Index, to quantify climatic limitations on foliar development of QTP alpine meadows. A case study was conducted using the observed leaf onset and offset dates of dominant species in QTP Kobresia meadows from 1989 to 2016. The root-mean-square errors (RMSEs) of modeled leaf onset and offset dates from the AMPP model were 6.9 d and 11.0 d, respectively, decreasing by 13.8%-48.9% and 7.6%-47.1% compared with the null model and seven other phenology models. The correlation coefficients between the predicted and observed leaf onset and offset dates were 0.75 and 0.34, respectively, higher than the 0.50-0.68 and -0.22-0.11 from other models. The RMSE ranges of predicted leaf onset and offset dates among three different sites were 2.9 d and 1.1 d, respectively, lower than or equal to the 3.6-12.4 d and the 1.1-6.9 d from other models. Results indicated that the AMPP model clearly improved the prediction accuracy and simulation of the interannual variability of leaf onset and offset dates and showed more robust simulations at different sites. Moreover, this model can be easily embedded into most ecosystem process models and applied to other alpine or subalpine grasslands once it has been adapted to their requirements.
引用
收藏
页码:1089 / 1100
页数:12
相关论文
共 50 条
  • [1] Winter plant phenology in the alpine meadow on the eastern Qinghai-Tibetan Plateau
    Mo, Li
    Luo, Peng
    Mou, Chengxiang
    Yang, Hao
    Wang, Jun
    Wang, Zhiyuan
    Li, Yuejiao
    Luo, Chuan
    Li, Ting
    Zuo, Dandan
    ANNALS OF BOTANY, 2018, 122 (06) : 1033 - 1045
  • [2] Warming and precipitation addition interact to affect plant spring phenology in alpine meadows on the central Qinghai-Tibetan Plateau
    Ganjurjav, Hasbagan
    Gornish, Elise S.
    Hu, Guozheng
    Schwartz, Mark W.
    Wan, Yunfan
    Li, Yue
    Gao, Qingzhu
    AGRICULTURAL AND FOREST METEOROLOGY, 2020, 287
  • [3] Effect of snowpack on the soil bacteria of alpine meadows in the Qinghai-Tibetan Plateau of China
    Ade, L. J.
    Hu, L.
    Zi, H. B.
    Wang, C. T.
    Lerdau, M.
    Dong, S. K.
    CATENA, 2018, 164 : 13 - 22
  • [4] Nitrous oxide emissions from two alpine meadows in the Qinghai-Tibetan Plateau
    Du, Yangong
    Cui, Yingguang
    Xu, Xingliang
    Liang, Dongying
    Long, Ruijun
    Cao, Guangmin
    PLANT AND SOIL, 2008, 311 (1-2) : 245 - 254
  • [5] Grazing promotes plant functional diversity in alpine meadows on the Qinghai-Tibetan Plateau
    Li, Yu
    Dong, Shikui
    Gao, Qingzhu
    Zhang, Yong
    Liu, Shiliang
    Swift, David
    Zhao, Jinbo
    Ganjurjav, Hasbagan
    Hu, Guozheng
    Wang, Xuexia
    Yan, Yulong
    Cao, Xujuan
    Li, Wenhan
    Luo, Wenrong
    Zhao, Zhenzhen
    Li, Shuai
    Gao, Xiaoxia
    RANGELAND JOURNAL, 2019, 41 (01): : 73 - 81
  • [6] Effects of microtopography on soil microbial communities in alpine meadows on the Qinghai-Tibetan Plateau
    Li, Xinwei
    Li, Xilai
    Shi, Yan
    Zhao, Shoujing
    Liu, Jiale
    Lin, Yinyi
    Li, Chunli
    Zhang, Chunhui
    CATENA, 2024, 239
  • [7] Shrub encroachment accelerates the processes of moisture redistribution in alpine meadows on the Qinghai-Tibetan Plateau
    Zhao, Lirong
    Li, Kexin
    Zhu, Ni
    Gao, Junmei
    Zhang, Jing
    Wang, Di
    Wang, Xiaoli
    Wang, Yanlong
    Ma, Yushou
    Liu, Yu
    GEODERMA, 2025, 454
  • [8] Quantifying Grazing Intensity Using Remote Sensing in Alpine Meadows on Qinghai-Tibetan Plateau
    Ma, Qingqing
    Chai, Linrong
    Hou, Fujiang
    Chang, Shenghua
    Ma, Yushou
    Tsunekawa, Atsushi
    Cheng, Yunxiang
    SUSTAINABILITY, 2019, 11 (02)
  • [9] Grazing Exclusion Changed the Complexity and Keystone Species of Alpine Meadows on the Qinghai-Tibetan Plateau
    Zhang, Yong
    Gao, Qingzhu
    Ganjurjav, Hasbagan
    Dong, Shikui
    Zheng, Qiuzhu
    Ma, Yandan
    Liang, Kemin
    FRONTIERS IN ECOLOGY AND EVOLUTION, 2021, 9
  • [10] Spatiotemporal variation in alpine grassland phenology in the Qinghai-Tibetan Plateau from 1999 to 2009
    DING MingJun
    ZHANG YiLi
    SUN XiaoMin
    LIU LinShan
    WANG ZhaoFeng
    BAI WanQi
    Science Bulletin, 2013, (03) : 396 - 405