Non-convex sparse regularization approach framework for high multiple-source resolution in Cerenkov luminescence tomography

被引:43
作者
Guo, Hongbo [1 ,2 ]
Hu, Zhenhua [2 ,3 ,4 ,5 ]
He, Xiaowei [1 ]
Zhang, Xiaojun [6 ]
Liu, Muhan [2 ]
Zhang, Zeyu [2 ]
Shi, Xiaojing [2 ]
Zheng, Sheng [2 ]
Tian, Jie [2 ,3 ,4 ,5 ]
机构
[1] Northwest Univ Xian, Sch Informat Sci & Technol, Xian 710069, Shaanxi, Peoples R China
[2] Inst Automat, CAS Key Lab Mol Imaging, Beijing 100190, Peoples R China
[3] Beijing Key Lab Mol Imaging, Beijing 100190, Peoples R China
[4] State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
[5] Univ Chinese Acad Sci, Beijing 100080, Peoples R China
[6] Chinese Peoples Liberat Army Gen Hosp, Dept Nucl Med, Beijing 100853, Peoples R China
基金
中国国家自然科学基金;
关键词
FLUORESCENCE MOLECULAR TOMOGRAPHY; BIOLUMINESCENCE TOMOGRAPHY; IMAGING-SYSTEM; LYMPH-NODES; RADIOTRACERS; RECONSTRUCTION; FEASIBILITY; ENDOSCOPY; ALGORITHM; ALLOWS;
D O I
10.1364/OE.25.028068
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
With the help of the clinical application of CLI in tumour and lymph node imaging, Cerenkov luminescence tomography (CLT) has the potential to be used for cancer staging. If staging cancer based on optical image of tumour, node and metastasis, one of the critical issues is multiple-source resolution. Because of the ill-posedness of the inverse problem and the diversity of tumor biological characteristics, the multiple-source resolution is a meaningful but challenge problem. In this paper, based on the compression perception theory, a non-convex sparse regularization algorithm (nCSRA) framework was proposed to improve the capacity of multiple-source resolving. Two typical algorithms (homotopy and iterative shrinkage-thresholding algorithm) were explored to test the performance of nCSRA. In numerical simulations and in vivo imaging experiments, the comparison results showed that the proposed nCSRA framework can significantly enhance the multiple-source resolution capability in aspect of spatial resolution, intensity resolution, and size resolution. (C) 2017 Optical Society of America
引用
收藏
页码:28068 / 28085
页数:18
相关论文
共 46 条
[1]   Quantitative Modeling of Cerenkov Light Production Efficiency from Medical Radionuclides [J].
Beattie, Bradley J. ;
Thorek, Daniel L. J. ;
Schmidtlein, Charles R. ;
Pentlow, Keith S. ;
Humm, John L. ;
Hielscher, Andreas H. .
PLOS ONE, 2012, 7 (02)
[2]   A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems [J].
Beck, Amir ;
Teboulle, Marc .
SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01) :183-202
[3]  
Boschi F., 2014, CURR MOL IMAG, V3, P106, DOI DOI 10.2174/2211555203666141128002406
[4]   Cerenkov Luminescence Endoscopy: Improved Molecular Sensitivity with β--Emitting Radiotracers [J].
Carpenter, Cohn M. ;
Ma, Xiaowei ;
Liu, Hongguang ;
Sun, Conroy ;
Pratx, Guillem ;
Wang, Jing ;
Gambhir, Sanjiv S. ;
Xing, Lei ;
Cheng, Zhen .
JOURNAL OF NUCLEAR MEDICINE, 2014, 55 (11) :1905-1909
[5]   A Perspective on Cancer Cell Metastasis [J].
Chaffer, Christine L. ;
Weinberg, Robert A. .
SCIENCE, 2011, 331 (6024) :1559-1564
[6]  
Chen RL, 2012, PLOS ONE, V7, DOI [10.1371/journal.pone.0050957, 10.1371/journal.pone.0051246]
[7]   L1/2 regularization based numerical method for effective reconstruction of bioluminescence tomography [J].
Chen, Xueli ;
Yang, Defu ;
Zhang, Qitan ;
Liang, Jimin .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (18)
[8]   Probability method for Cerenkov luminescence tomography based on conformance error minimization [J].
Ding, Xintao ;
Wang, Kun ;
Jie, Biao ;
Luo, Yonglong ;
Hu, Zhenhua ;
Tian, Jie .
BIOMEDICAL OPTICS EXPRESS, 2014, 5 (07) :2091-2112
[9]   Cerenkov Radiation Energy Transfer (CRET) Imaging: A Novel Method for Optical Imaging of PET Isotopes in Biological Systems [J].
Dothager, Robin S. ;
Goiffon, Reece J. ;
Jackson, Erin ;
Harpstrite, Scott ;
Piwnica-Worms, David .
PLOS ONE, 2010, 5 (10)
[10]   68Ga-Labeled 3PRGD2 for Dual PET and Cerenkov Luminescence Imaging of Orthotopic Human Glioblastoma [J].
Fan, Di ;
Zhang, Xin ;
Zhong, Lijun ;
Liu, Xujie ;
Sun, Yi ;
Zhao, Huiyun ;
Jia, Bing ;
Liu, Zhaofei ;
Zhu, Zhaohui ;
Shi, Jiyun ;
Wang, Fan .
BIOCONJUGATE CHEMISTRY, 2015, 26 (06) :1054-1060