Quantum Dot Channel (QDC) FETs with Wraparound II-VI Gate Insulators: Numerical Simulations

被引:7
作者
Jain, F. [1 ]
Lingalugari, M. [1 ]
Kondo, J. [1 ]
Mirdha, P. [1 ]
Suarez, E. [2 ]
Chandy, J. [1 ]
Heller, E. [3 ]
机构
[1] UConn, ECE Dept, Storrs, CT 06269 USA
[2] ASU, Tempe, AZ USA
[3] Synopsys, Ossining, NY 10562 USA
关键词
Quantum dot channel (QDC); 7-nm FETs; wraparound II-VI gate; multistate FETs; quantum dot FETs; TRANSISTORS; TRANSPORT; STATES; SI;
D O I
10.1007/s11664-016-4812-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents simulations predicting the feasibility of 9-nm wraparound quantum dot channel (QDC) field-effect transistors (FETs). In particular, II-VI lattice-matched layers which reduce the density of interface states, serving as top (tunnel gate), side, and bottom gate insulators, have been simulated. Quantum simulations show FET operation with voltage swing of similar to 0.2 V. Incorporation of cladded quantum dots, such as SiO (x) -Si and GeO (x) -Ge, under the gate tunnel oxide results in electrical transport in one or more quantum dot layers which form a quantum dot superlattice (QDSL). Long-channel QDC FETs have experimental multistate drain current (I (D))-gate voltage (V (G)) and drain current (I (D))-drain voltage (V (D)) characteristics, which can be attributed to the manifestation of extremely narrow energy minibands formed in the QDSL. An approach for modeling the multistate I (D)-V (G) characteristics is reported. The multistate characteristics of QDC FETs permit design of compact two-bit multivalued logic circuits.
引用
收藏
页码:5663 / 5670
页数:8
相关论文
共 30 条
[1]   End-bonded contacts for carbon nanotube transistors with low, size-independent resistance [J].
Cao, Qing ;
Han, Shu-Jen ;
Tersoff, Jerry ;
Franklin, Aaron D. ;
Zhu, Yu ;
Zhang, Zhen ;
Tulevski, George S. ;
Tang, Jianshi ;
Haensch, Wilfried .
SCIENCE, 2015, 350 (6256) :68-72
[2]  
Chen JHC, 2014, IEEE INT INTERC TECH, P93, DOI 10.1109/IITC.2014.6831843
[3]   Sub-10 nm Carbon Nanotube Transistor [J].
Franklin, Aaron D. ;
Luisier, Mathieu ;
Han, Shu-Jen ;
Tulevski, George ;
Breslin, Chris M. ;
Gignac, Lynne ;
Lundstrom, Mark S. ;
Haensch, Wilfried .
NANO LETTERS, 2012, 12 (02) :758-762
[4]   Nonvolatile Silicon Memory Using GeO x -Cladded Ge Quantum Dots Self-Assembled on SiO2 and Lattice-Matched II-VI Tunnel Insulator [J].
Gogna, M. ;
Suarez, E. ;
Chan, P. -Y. ;
Al-Amoody, F. ;
Karmakar, S. ;
Jain, F. .
JOURNAL OF ELECTRONIC MATERIALS, 2011, 40 (08) :1769-1774
[5]  
Gogna P., 2012, International Journal of VLSI Design Communication Systems, V3, P27
[6]   Analysis of In0.25Al0.48As/In0.53Ga0.47As/InP quantum wire MODFETs employing coupled well channels [J].
Heller, EK ;
Islam, SK ;
Zhao, G ;
Jain, FC .
SOLID-STATE ELECTRONICS, 1999, 43 (05) :901-914
[7]  
Hisamoto D, 2000, IEEE T ELECTRON DEV, V47, P2320, DOI 10.1109/16.887014
[8]   Si and InGaAs Spatial Wavefunction-Switched (SWS) FETs with II-VI Gate Insulators: An Approach to the Design and Integration of Two-Bit SRAMs and Binary CMOS Logic [J].
Jain, F. ;
Chan, P. -Y. ;
Lingalugari, M. ;
Kondo, J. ;
Suarez, E. ;
Gogna, P. ;
Chandy, J. ;
Heller, E. .
JOURNAL OF ELECTRONIC MATERIALS, 2015, 44 (09) :3108-3115
[9]   Four-State Sub-12-nm FETs Employing Lattice-Matched II-VI Barrier Layers [J].
Jain, F. ;
Chan, P. -Y. ;
Suarez, E. ;
Lingalugari, M. ;
Kondo, J. ;
Gogna, P. ;
Miller, B. ;
Chandy, J. ;
Heller, E. .
JOURNAL OF ELECTRONIC MATERIALS, 2013, 42 (11) :3191-3202
[10]   Quantum Dot Channel (QDC) Field-Effect Transistors (FETs) Using II-VI Barrier Layers [J].
Jain, F. ;
Karmakar, S. ;
Chan, P. -Y. ;
Suarez, E. ;
Gogna, M. ;
Chandy, J. ;
Heller, E. .
JOURNAL OF ELECTRONIC MATERIALS, 2012, 41 (10) :2775-2784