The genetic architecture of DNA replication timing in human pluripotent stem cells

被引:19
|
作者
Ding, Qiliang [1 ]
Edwards, Matthew M. [1 ]
Wang, Ning [2 ]
Zhu, Xiang [3 ,4 ,5 ]
Bracci, Alexa N. [1 ]
Hulke, Michelle L. [1 ]
Hu, Ya [1 ,6 ]
Tong, Yao [1 ]
Hsiao, Joyce [7 ]
Charvet, Christine J. [1 ]
Ghosh, Sulagna [8 ,9 ,10 ]
Handsaker, Robert E. [8 ,9 ]
Eggan, Kevin [8 ,10 ,11 ]
Merkle, Florian T. [12 ]
Gerhardt, Jeannine [13 ,14 ]
Egli, Dieter [2 ]
Clark, Andrew G. [1 ]
Koren, Amnon [1 ]
机构
[1] Cornell Univ, Dept Mol Biol & Genet, Ithaca, NY 14853 USA
[2] Columbia Univ, Dept Pediat, New York, NY 10032 USA
[3] Penn State Univ, Dept Stat, University Pk, PA 16801 USA
[4] Penn State Univ, Huck Inst Life Sci, University Pk, PA 16801 USA
[5] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[6] New York Genome Ctr, New York, NY 10013 USA
[7] Univ Chicago, Dept Human Genet, Chicago, IL 60637 USA
[8] Broad Inst MIT & Harvard, Stanley Ctr Psychiat Res, Cambridge, MA 02142 USA
[9] Harvard Med Sch, Dept Genet, Boston, MA 02115 USA
[10] Harvard Univ, Dept Stem Cell & Regenerat Biol, Cambridge, MA 02138 USA
[11] Harvard Univ, Howard Hughes Med Inst, Cambridge, MA 02138 USA
[12] Univ Cambridge, Wellcome Trust Med Res Council Inst Metab Sci, Cambridge, England
[13] Weill Cornell Med, Ronald O Perelman & Claudia Cohen Ctr Reprod Med, New York, NY 10065 USA
[14] Weill Cornell Med, Dept Obstet & Gynecol, New York, NY 10065 USA
基金
美国国家科学基金会; 美国国家卫生研究院; 英国惠康基金;
关键词
CHROMATIN-STRUCTURE; BETA; ORGANIZATION; INITIATION; SEQUENCE; REVEALS; REGION; ACETYLTRANSFERASE; METHYLATION; ACTIVATION;
D O I
10.1038/s41467-021-27115-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The genetic basis of how cells replicate their DNA is not well understood. Here, the authors identify >1000 genetic elements that control human replication and reveal a complex epigenetic system that regulates replication origin activities. DNA replication follows a strict spatiotemporal program that intersects with chromatin structure but has a poorly understood genetic basis. To systematically identify genetic regulators of replication timing, we exploited inter-individual variation in human pluripotent stem cells from 349 individuals. We show that the human genome's replication program is broadly encoded in DNA and identify 1,617 cis-acting replication timing quantitative trait loci (rtQTLs) - sequence determinants of replication initiation. rtQTLs function individually, or in combinations of proximal and distal regulators, and are enriched at sites of histone H3 trimethylation of lysines 4, 9, and 36 together with histone hyperacetylation. H3 trimethylation marks are individually repressive yet synergistically associate with early replication. We identify pluripotency-related transcription factors and boundary elements as positive and negative regulators of replication timing, respectively. Taken together, human replication timing is controlled by a multi-layered mechanism with dozens of effectors working combinatorially and following principles analogous to transcription regulation.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] DNA Replication in Human Mitochondria
    Zinovkina, L. A.
    BIOCHEMISTRY-MOSCOW, 2019, 84 (08) : 884 - 895
  • [32] DNA Damage Response and Cell Cycle Regulation in Pluripotent Stem Cells
    Chen, Andy Chun Hang
    Peng, Qian
    Fong, Sze Wan
    Lee, Kai Chuen
    Yeung, William Shu Biu
    Lee, Yin Lau
    GENES, 2021, 12 (10)
  • [33] Derivation and maturation of synthetic and contractile vascular smooth muscle cells from human pluripotent stem cells
    Wanjare, Maureen
    Kuo, Frederick
    Gerecht, Sharon
    CARDIOVASCULAR RESEARCH, 2013, 97 (02) : 321 - 330
  • [34] Advances in Manufacturing Cardiomyocytes from Human Pluripotent Stem Cells
    Floy, Martha E.
    Shabnam, Fathima
    Simmons, Aaron D.
    Bhute, Vijesh J.
    Jin, Gyuhyung
    Friedrich, Will A.
    Steinberg, Alexandra B.
    Palecek, Sean P.
    ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, 2022, 13 : 255 - 278
  • [35] Generation of articular chondrocytes from human pluripotent stem cells
    Craft, April M.
    Rockel, Jason S.
    Nartiss, Yulia
    Kandel, Rita A.
    Alman, Benjamin A.
    Keller, Gordon M.
    NATURE BIOTECHNOLOGY, 2015, 33 (06) : 638 - +
  • [36] Generation of pure monocultures of human microglia-like cells from induced pluripotent stem cells
    Banerjee, Poulomi
    Paza, Evdokia
    Perkins, Emma M.
    James, Owen G.
    Kenkhuis, Boyd
    Lloyd, Amy F.
    Burr, Karen
    Story, David
    Yusuf, Dilmurat
    He, Xin
    Backofen, Rolf
    Dando, Owen
    Chandran, Siddharthan
    Priller, Josef
    STEM CELL RESEARCH, 2020, 49
  • [37] Toward Precision Medicine with Human Pluripotent Stem Cells for Diabetes
    Memon, Bushra
    Abdelalim, Essam M.
    STEM CELLS TRANSLATIONAL MEDICINE, 2022, 11 (07) : 704 - 714
  • [38] Energy Metabolism in Human Pluripotent Stem Cells and Their Differentiated Counterparts
    Varum, Sandra
    Rodrigues, Ana S.
    Moura, Michelle B.
    Momcilovic, Olga
    Easley, Charles A.
    Ramalho-Santos, Joao
    Van Houten, Bennett
    Schatten, Gerald
    PLOS ONE, 2011, 6 (06):
  • [39] Human Pluripotent Stem Cells to Model Islet Defects in Diabetes
    Balboa, Diego
    Iworima, Diepiriye G.
    Kieffer, Timothy J.
    FRONTIERS IN ENDOCRINOLOGY, 2021, 12
  • [40] MicroRNA Profiling of Human-Induced Pluripotent Stem Cells
    Wilson, Kitchener D.
    Venkatasubrahmanyam, Shivkumar
    Jia, Fangjun
    Sun, Ning
    Butte, Atul J.
    Wu, Joseph C.
    STEM CELLS AND DEVELOPMENT, 2009, 18 (05) : 749 - 757