Betti-linear ideals

被引:1
作者
Wood, Daniel [1 ]
机构
[1] SUNY Albany, Dept Math & Stat, Albany, NY 12222 USA
关键词
GRADED MODULES; RESOLUTIONS; NUMBERS; LATTICE;
D O I
10.1016/j.jpaa.2018.07.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the notion of a Betti-linear monomial ideal, which generalizes the notion of lattice-linear monomial ideal introduced by Clark. We provide a characterization of Betti-linearity in terms of Tchernev's poset construction. As an application we obtain an explicit canonical construction for the minimal free resolutions of monomial ideals having pure resolutions. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1753 / 1765
页数:13
相关论文
共 14 条
[1]  
[Anonymous], 1995, Handbook of combinatorics
[2]   Graded Betti numbers of Cohen-Macaulay modules and the multiplicity conjecture [J].
Boij, Mats ;
Soderberg, Jonas .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 78 :85-106
[3]   Betti numbers of graded modules and the multiplicity conjecture in the non-Cohen-Macaulay case [J].
Boij, Mats ;
Soderberg, Jonas .
ALGEBRA & NUMBER THEORY, 2012, 6 (03) :437-454
[4]   RIGID MONOMIAL IDEALS [J].
Clark, Timothy B. P. ;
Mapes, Sonja .
JOURNAL OF COMMUTATIVE ALGEBRA, 2014, 6 (01) :33-52
[5]   Poset resolutions and lattice-linear monomial ideals [J].
Clark, Timothy B. P. .
JOURNAL OF ALGEBRA, 2010, 323 (04) :899-919
[6]   Resolutions of Stanley-Reisner rings and Alexander duality [J].
Eagon, JA ;
Reiner, V .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 130 (03) :265-275
[7]   THE EXISTENCE OF EQUIVARIANT PURE FREE RESOLUTIONS [J].
Eisenbud, David ;
Floystad, Gunnar ;
Weyman, Jerzy .
ANNALES DE L INSTITUT FOURIER, 2011, 61 (03) :905-926
[8]  
Eisenbud D, 2009, J AM MATH SOC, V22, P859
[9]   MINIMAL RESOLUTIONS OF SOME MONOMIAL IDEALS [J].
ELIAHOU, S ;
KERVAIRE, M .
JOURNAL OF ALGEBRA, 1990, 129 (01) :1-25
[10]   LCM LATTICES SUPPORTING PURE RESOLUTIONS [J].
Francisco, Christopher A. ;
Mermin, Jeffrey ;
Schweig, Jay .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (06) :2315-2325