Statistical distribution of the local purity in a large quantum system

被引:21
作者
De Pasquale, A. [1 ,2 ,3 ,4 ]
Facchi, P. [2 ,5 ,6 ]
Giovannetti, V. [3 ,4 ]
Parisi, G. [7 ,8 ,9 ]
Pascazio, S. [1 ,2 ,6 ]
Scardicchio, A. [10 ,11 ]
机构
[1] Univ Bari, Dipartmento Fis, I-70126 Bari, Italy
[2] Univ Bari, MECENAS, I-70126 Bari, Italy
[3] Scuola Normale Super Pisa, NEST, I-56126 Pisa, Italy
[4] CNR, Ist Nanosci, I-56126 Pisa, Italy
[5] Univ Bari, Dipartimento Matemat, I-70126 Bari, Italy
[6] Ist Nazl Fis Nucl, Sez Bari, I-70126 Bari, Italy
[7] Univ Roma La Sapienza, Dipartimento Fis, I-00185 Rome, Italy
[8] CNR INFM, Ctr Stat Mech & Complex SMC, I-00185 Rome, Italy
[9] Ist Nazl Fis Nucl, Sez Roma, I-00185 Rome, Italy
[10] Abdus Salam Int Ctr Theoret Phys, I-34014 Trieste, Italy
[11] Ist Nazl Fis Nucl, Sez Trieste, I-34014 Trieste, Italy
关键词
ENTANGLEMENT; ENTROPY;
D O I
10.1088/1751-8113/45/1/015308
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The local purity of large many-body quantum systems can be studied by following a statistical mechanical approach based on a random matrix model. Restricting the analysis to the case of global pure states, this method proved to be successful, and a full characterization of the statistical properties of the local purity was obtained by computing the partition function of the problem. Here we generalize these techniques to the case of global mixed states. In this context, by uniformly sampling the phase space of states with assigned global mixedness, we determine the exact expression of the first two moments of the local purity and a general expression for the moments of higher order. This generalizes previous results obtained for globally pure configurations. Furthermore, through the introduction of a partition function for a suitable canonical ensemble, we compute the approximate expression of the first moment of the marginal purity in the high-temperature regime. In the process, we establish a formal connection with the theory of quantum twirling maps that provides an alternative, possibly fruitful, way of performing the calculation.
引用
收藏
页数:18
相关论文
共 29 条
[1]   Characterizing entanglement with global and marginal entropic measures [J].
Adesso, G ;
Illuminati, F ;
De Siena, S .
PHYSICAL REVIEW A, 2003, 68 (06)
[2]   Extremal entanglement and mixedness in continuous variable systems [J].
Adesso, G ;
Serafini, A ;
Illuminati, F .
PHYSICAL REVIEW A, 2004, 70 (02) :022318-1
[3]  
Benenti G., 2004, PRINCIPLES QUANTUM C, V1
[4]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[5]   Unextendible product bases and bound entanglement [J].
Bennett, CH ;
DiVincenzo, DP ;
Mor, T ;
Shor, PW ;
Smolin, JA ;
Terhal, BM .
PHYSICAL REVIEW LETTERS, 1999, 82 (26) :5385-5388
[6]   Purification of noisy entanglement and faithful teleportation via noisy channels [J].
Bennett, CH ;
Brassard, G ;
Popescu, S ;
Schumacher, B ;
Smolin, JA ;
Wootters, WK .
PHYSICAL REVIEW LETTERS, 1996, 76 (05) :722-725
[7]   Mixedness and teleportation [J].
Bose, S ;
Vedral, V .
PHYSICAL REVIEW A, 2000, 61 (04) :2
[8]   Characterizing entanglement [J].
Bruss, D .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (09) :4237-4251
[9]  
Chuang I. N., 2000, Quantum Computation and Quantum Information
[10]   Strong superadditivity and monogamy of the Renyi measure of entanglement [J].
Cornelio, Marcio F. ;
de Oliveira, Marcos C. .
PHYSICAL REVIEW A, 2010, 81 (03)