A CCCH-Type Zinc Finger Nucleic Acid-Binding Protein Quantitatively Confers Resistance against Rice Bacterial Blight Disease

被引:103
作者
Deng, Hanqing [1 ]
Liu, Hongbo [1 ]
Li, Xianghua [1 ]
Xiao, Jinghua [1 ]
Wang, Shiping [1 ]
机构
[1] Huazhong Agr Univ, Natl Ctr Plant Gene Res Wuhan, Natl Key Lab Crop Genet Improvement, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
ORYZAE PV.-ORYZAE; DEFENSE-RESPONSIVE GENES; MESSENGER-RNA; XANTHOMONAS-ORYZAE; ARABIDOPSIS-THALIANA; CULTIVAR MINGHUI-63; FUNCTIONAL-ANALYSIS; NEGATIVE REGULATOR; BROAD-SPECTRUM; INDICA RICE;
D O I
10.1104/pp.111.191379
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Bacterial blight is a devastating disease of rice (Oryza sativa) caused by Xanthomonas oryzae pv oryzae (Xoo). Zinc finger proteins harboring the motif with three conserved cysteine residues and one histidine residue (CCCH) belong to a large family. Although at least 67 CCCH-type zinc finger protein genes have been identified in the rice genome, their functions are poorly understood. Here, we report that one of the rice CCCH-type zinc finger proteins, C3H12, containing five typical CX8-CX5-CX3-H zinc finger motifs, is involved in the rice-Xoo interaction. Activation of C3H12 partially enhanced resistance to Xoo, accompanied by the accumulation of jasmonic acid (JA) and induced expression of JA signaling genes in rice. In contrast, knockout or suppression of C3H12 resulted in partially increased susceptibility to Xoo, accompanied by decreased levels of JA and expression of JA signaling genes in rice. C3H12 colocalized with a minor disease resistance quantitative trait locus to Xoo, and the enhanced resistance of randomly chosen plants in the quantitative trait locus mapping population correlated with an increased expression level of C3H12. The C3H12 protein localized in the nucleus and possessed nucleic acid-binding activity in vitro. These results suggest that C3H12, as a nucleic acid-binding protein, positively and quantitatively regulates rice resistance to Xoo and that its function is likely associated with the JA-dependent pathway.
引用
收藏
页码:876 / 889
页数:14
相关论文
共 68 条
[1]   NAB2 - A YEAST NUCLEAR POLYADENYLATED RNA-BINDING PROTEIN ESSENTIAL FOR CELL VIABILITY [J].
ANDERSON, JT ;
WILSON, SM ;
DATAR, KV ;
SWANSON, MS .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (05) :2730-2741
[2]  
Bai CY, 1996, MOL CELL BIOL, V16, P6661
[3]   Role of plant hormones in plant defence responses [J].
Bari, Rajendra ;
Jones, Jonathan D. G. .
PLANT MOLECULAR BIOLOGY, 2009, 69 (04) :473-488
[4]   The galvanization of biology: A growing appreciation for the roles of zinc [J].
Berg, JM ;
Shi, YG .
SCIENCE, 1996, 271 (5252) :1081-1085
[5]   Tristetraprolin and other CCCH tandem zinc-finger proteins in the regulation of mRNA turnover [J].
Blackshear, PJ .
BIOCHEMICAL SOCIETY TRANSACTIONS, 2002, 30 :945-952
[6]   Expression pattern of a rice disease resistance gene Xa3/Xa26 is differentially regulated by the genetic backgrounds and developmental stages that influence its function [J].
Cao, Yinglong ;
Ding, Xinhua ;
Cai, Meng ;
Zhao, Jing ;
Lin, Yongjun ;
Li, Xianghua ;
Xu, Caiguo ;
Wang, Shiping .
GENETICS, 2007, 177 (01) :523-533
[7]   Evidence that tristetraprolin is a physiological regulator of granulocyte-macrophage colony-stimulating factor messenger RNA deadenylation and stability [J].
Carballo, E ;
Lai, WS ;
Blackshear, PJ .
BLOOD, 2000, 95 (06) :1891-1899
[8]   AU-RICH ELEMENTS - CHARACTERIZATION AND IMPORTANCE IN MESSENGER-RNA DEGRADATION [J].
CHEN, CYA ;
SHYU, AB .
TRENDS IN BIOCHEMICAL SCIENCES, 1995, 20 (11) :465-470
[9]   New gene for bacterial blight resistance in rice located on chromosome 12 identified from Minghui 63, an elite restorer line [J].
Chen, HL ;
Wang, SP ;
Zhang, QF .
PHYTOPATHOLOGY, 2002, 92 (07) :750-754
[10]   Two RNA binding proteins, HEN4 and HUM, act in the processing of AGAMOUS Pre-mRNA in Arabidopsis thaliana [J].
Cheng, YL ;
Kato, N ;
Wang, WM ;
Li, JJ ;
Chen, XM .
DEVELOPMENTAL CELL, 2003, 4 (01) :53-66