Symmetries and Solutions for Some Classes of Advective Reaction-Diffusion Systems

被引:3
|
作者
Torrisi, Mariano [1 ]
Tracina, Rita [1 ]
机构
[1] Univ Catania, Dipartimento Matemat & Informat, Viale Andrea Doria 6, I-95125 Catania, Italy
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 10期
关键词
reaction-diffusion-advection equations; symmetries; exact solutions; MODEL;
D O I
10.3390/sym14102009
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we consider some reaction-advection-diffusion systems in order to obtain exact solutions via a symmetry approach. We write the determining system of a general class. Then, for particular subclasses, we obtain special forms of the arbitrary constitutive parameters that allow us to extend the principal Lie algebra. In some cases, we write the corresponding reduced system and we find special exact solutions.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] EXACT SOLUTIONS OF A REACTION-DIFFUSION EGUATION
    Skotar, Alena
    Yurik, Ivan
    UKRAINIAN FOOD JOURNAL, 2012, 1 (02) : 81 - +
  • [22] Traveling wave solutions in delayed reaction-diffusion systems with mixed monotonicity
    Wang, Qi-Ru
    Zhou, Kai
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (10) : 2549 - 2562
  • [23] Traveling wave solutions in temporally discrete reaction-diffusion systems with delays
    Xia, Jing
    Yu, Zhixian
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2011, 91 (10): : 809 - 823
  • [24] WAVE PHENOMENA IN REACTION-DIFFUSION SYSTEMS
    Steinbock, Oliver
    Engel, Harald
    ENGINEERING OF CHEMICAL COMPLEXITY, 2013, 11 : 147 - 167
  • [25] On Periodic Solutions of a Nonlinear Reaction-Diffusion System
    Kosov, A. A.
    Semenov, E., I
    BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2018, 26 : 35 - 46
  • [26] Amplitude equations for reaction-diffusion systems with cross diffusion
    Zemskov, Evgeny P.
    Vanag, Vladimir K.
    Epstein, Irving R.
    PHYSICAL REVIEW E, 2011, 84 (03):
  • [27] Nonclassical Symmetry Solutions for Non-Autonomous Reaction-Diffusion Equations
    Bradshaw-Hajek, Bronwyn H.
    SYMMETRY-BASEL, 2019, 11 (02):
  • [28] Riccati-Ermakov systems and explicit solutions for variable coefficient reaction-diffusion equations
    Pereira, Enrique
    Suazo, Erwin
    Trespalacios, Jessica
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 329 : 278 - 296
  • [29] A selection criterion for patterns in reaction-diffusion systems
    Marquez-Lago, Tatiana T.
    Padilla, Pablo
    THEORETICAL BIOLOGY AND MEDICAL MODELLING, 2014, 11
  • [30] Chemical Organization Theory of Reaction-diffusion systems
    Peter, Stephan
    Dittrich, Peter
    Ibrahim, Bashar
    PROCEEDINGS OF 2019 IEEE 4TH WORLD CONFERENCE ON COMPLEX SYSTEMS (WCCS' 19), 2019, : 171 - 176