Symmetries and Solutions for Some Classes of Advective Reaction-Diffusion Systems

被引:3
|
作者
Torrisi, Mariano [1 ]
Tracina, Rita [1 ]
机构
[1] Univ Catania, Dipartimento Matemat & Informat, Viale Andrea Doria 6, I-95125 Catania, Italy
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 10期
关键词
reaction-diffusion-advection equations; symmetries; exact solutions; MODEL;
D O I
10.3390/sym14102009
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we consider some reaction-advection-diffusion systems in order to obtain exact solutions via a symmetry approach. We write the determining system of a general class. Then, for particular subclasses, we obtain special forms of the arbitrary constitutive parameters that allow us to extend the principal Lie algebra. In some cases, we write the corresponding reduced system and we find special exact solutions.
引用
收藏
页数:10
相关论文
共 50 条
  • [11] Exact solutions of reaction-diffusion systems and nonlinear wave equations
    M. Rodrigo
    M. Mimura
    Japan Journal of Industrial and Applied Mathematics, 2001, 18 : 657 - 696
  • [12] Exact solutions of a reaction-diffusion system for Proteus mirabilis bacterial colonies
    Torrisi, M.
    Tracina, R.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2011, 12 (03) : 1865 - 1874
  • [13] Reaction-Diffusion Models with Delay: Some Properties, Equations, Problems, and Solutions
    Polyanin, A. D.
    Sorokin, V. G.
    Vyazmin, A. V.
    THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING, 2018, 52 (03) : 334 - 348
  • [14] Reaction-Diffusion Models with Delay: Some Properties, Equations, Problems, and Solutions
    A. D. Polyanin
    V. G. Sorokin
    A. V. Vyazmin
    Theoretical Foundations of Chemical Engineering, 2018, 52 : 334 - 348
  • [15] Exact solutions to new classes of reaction-diffusion equations containing delay and arbitrary functions
    A. D. Polyanin
    Theoretical Foundations of Chemical Engineering, 2015, 49 : 169 - 175
  • [16] Exact solutions to new classes of reaction-diffusion equations containing delay and arbitrary functions
    Polyanin, A. D.
    THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING, 2015, 49 (02) : 169 - 175
  • [17] On the generalized time fractional reaction-diffusion equation: Lie symmetries, exact solutions and conservation laws
    Yu, Jicheng
    Feng, Yuqiang
    CHAOS SOLITONS & FRACTALS, 2024, 182
  • [18] On multidimensional exact solutions of a nonlinear reaction-diffusion system
    Kosov, A. A.
    Semenov, E. I.
    Tirskikh, V. V.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2023, 33 (02): : 225 - 239
  • [19] Exact Solutions for Pattern Formation in a Reaction-Diffusion System
    Lin, Yezhi
    Liu, Yinping
    Li, Zhibin
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2013, 14 (05) : 307 - 315
  • [20] Solutions for Multitime Reaction-Diffusion PDE
    Ghiu, Cristian
    Udriste, Constantin
    MATHEMATICS, 2022, 10 (19)