Remote Sensing Image Semantic Segmentation Based on Edge Information Guidance

被引:56
作者
He, Chu [1 ,2 ]
Li, Shenglin [1 ]
Xiong, Dehui [1 ]
Fang, Peizhang [1 ]
Liao, Mingsheng [2 ]
机构
[1] Wuhan Univ, Elect Informat Sch, Wuhan 430072, Peoples R China
[2] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
remote sensing image; semantic segmentation; edge information; Edge-FCN; CLASSIFICATION;
D O I
10.3390/rs12091501
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Semantic segmentation is an important field for automatic processing of remote sensing image data. Existing algorithms based on Convolution Neural Network (CNN) have made rapid progress, especially the Fully Convolution Network (FCN). However, problems still exist when directly inputting remote sensing images to FCN because the segmentation result of FCN is not fine enough, and it lacks guidance for prior knowledge. To obtain more accurate segmentation results, this paper introduces edge information as prior knowledge into FCN to revise the segmentation results. Specifically, the Edge-FCN network is proposed in this paper, which uses the edge information detected by Holistically Nested Edge Detection (HED) network to correct the FCN segmentation results. The experiment results on ESAR dataset and GID dataset demonstrate the validity of Edge-FCN.
引用
收藏
页数:20
相关论文
共 42 条
  • [1] Adly H., 2017, P 2017 2 INT C MULT
  • [2] [Anonymous], 2019, SENSORS BASEL
  • [3] [Anonymous], 2016, PYRAMID SCENE PARSIN
  • [4] [Anonymous], 2017, Computing Research Repository, DOI DOI 10.4271/2018-01-1635
  • [5] [Anonymous], 2017, 2017 IEEE C COMPUTER, DOI DOI 10.1109/CVPR.2017.106
  • [6] [Anonymous], 2017, PROC CVPR IEEE, DOI DOI 10.1109/CVPR.2017.622
  • [7] Arribas J.I., 1999, P 1999 IEEE SIGN PRO
  • [8] SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
    Badrinarayanan, Vijay
    Kendall, Alex
    Cipolla, Roberto
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) : 2481 - 2495
  • [9] Brodersen K. H., 2010, Proceedings of the 2010 20th International Conference on Pattern Recognition (ICPR 2010), P4263, DOI 10.1109/ICPR.2010.1036