Si nanocrystal-containing SiOx (x < 2) produced by thermal annealing of PECVD realized thin films

被引:12
作者
Bedjaoui, M
Despax, B
Caumont, M
Bonafos, C
机构
[1] LGET, F-31062 Toulouse, France
[2] CEMES, F-31055 Toulouse, France
来源
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY | 2005年 / 124卷
关键词
PECVD; silicon nanocrystals; infrared spectroscopy; Raman spectroscopy; spectroscopic ellipsometry;
D O I
10.1016/j.mseb.2005.08.066
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper is focused on the description of relationship between deposition parameters (flow rates of SiH4 and N2O precursor gases) and properties of SiOx films. The silicon-rich silicon oxide thin films deposited using plasma enhanced chemical vapour deposition (PECVD) in silane-nitrous oxide-helium discharges were thermally annealed at 1273 K for 1 h. Fourier transform infrared (FTIR) spectroscopy indicated that the chemical composition was dominated by silicon suboxide containing silicon-nitride and silicon-hydrogen bonds. For the as-deposited films and for the annealed films, Raman spectra show a band approximately at 480 cm(-1), related to amorphous silicon and a band at 520 cm(-1), related to nanocrystallite silicon, respectively. Transmission electron microscopy analysis demonstrated that silicon nanocrystals (Si nc), having a mean radius ranging between 3 and 6 mn were present in the annealed films. Using spectroscopic ellipsometry (SE) in the 0.2-0.88 mu m spectral range, the values of layer thickness, optical indices and component volume fractions were determined using the Fourouhi-Bloomer (FB) model for the as-deposited films and the Bruggeman effective medium approximation (BEMA) for the annealed ones. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:508 / 512
页数:5
相关论文
共 23 条
[1]   On the nitrogen and oxygen incorporation in plasma-enhanced chemical vapor deposition (PECVD) SiOxNy films [J].
Alayo, MI ;
Pereyra, I ;
Scopel, WL ;
Fantini, MCA .
THIN SOLID FILMS, 2002, 402 (1-2) :154-161
[2]   Ellipsometric study of silicon nanocrystal optical constants [J].
Amans, D ;
Callard, S ;
Gagnaire, A ;
Joseph, J ;
Ledoux, G ;
Huisken, F .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (07) :4173-4179
[3]   Comparative investigation of hydrogen bonding in silicon based PECVD grown dielectrics for optical waveguides [J].
Ay, F ;
Aydinli, A .
OPTICAL MATERIALS, 2004, 26 (01) :33-46
[4]   Manipulation of two-dimensional arrays of Si nanocrystals embedded in thin SiO2 layers by low energy ion implantation [J].
Bonafos, C ;
Carrada, M ;
Cherkashin, N ;
Coffin, H ;
Chassaing, D ;
Assayag, GB ;
Claverie, A ;
Müller, T ;
Heinig, KH ;
Perego, M ;
Fanciulli, M ;
Dimitrakis, P ;
Normand, P .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (10) :5696-5702
[6]   SILICON QUANTUM WIRE ARRAY FABRICATION BY ELECTROCHEMICAL AND CHEMICAL DISSOLUTION OF WAFERS [J].
CANHAM, LT .
APPLIED PHYSICS LETTERS, 1990, 57 (10) :1046-1048
[7]   Trapping of plasma produced nanocrystalline Si particles on a low temperature substrate [J].
Chadbane, N ;
Cabarrocas, PRI ;
Vach, H .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2004, 338 :51-55
[8]   THEORETICAL ASPECTS OF THE LUMINESCENCE OF POROUS SILICON [J].
DELERUE, C ;
ALLAN, G ;
LANNOO, M .
PHYSICAL REVIEW B, 1993, 48 (15) :11024-11036
[9]   Luminescence from plasma deposited silicon films [J].
Edelberg, E ;
Bergh, S ;
Naone, R ;
Hall, M ;
Aydil, ES .
JOURNAL OF APPLIED PHYSICS, 1997, 81 (05) :2410-2417
[10]   OPTICAL DISPERSION-RELATIONS FOR AMORPHOUS-SEMICONDUCTORS AND AMORPHOUS DIELECTRICS [J].
FOROUHI, AR ;
BLOOMER, I .
PHYSICAL REVIEW B, 1986, 34 (10) :7018-7026