Multivariate Quantitative Multifactor Dimensionality Reduction for Detecting Gene-Gene Interactions

被引:13
作者
Yu, Wenbao [1 ]
Kwon, Min-Seok [2 ]
Park, Taesung [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Stat, Seoul 151742, South Korea
[2] Seoul Natl Univ, Interdisciplinary Program Bioinformat, Seoul 151742, South Korea
基金
新加坡国家研究基金会;
关键词
Gene-gene interaction; Multifactor dimensionality reduction; Multivariate analysis; Lipid-related traits; Principal components; GENOME-WIDE ASSOCIATION; ENVIRONMENT INTERACTIONS; COMBINATORIAL APPROACH; STRATEGIES; EPISTASIS; VARIANTS; IDENTIFY; REVEALS; LOCI;
D O I
10.1159/000377723
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Objectives: To determine gene-gene interactions and missing heritability of complex diseases is a challenging topic in genome-wide association studies. The multifactor dimensionality reduction (MDR) method is one of the most commonly used methods for identifying gene-gene interactions with dichotomous phenotypes. For quantitative phenotypes, the generalized MDR or quantitative MDR (QMDR) methods have been proposed. These methods are known as univariate methods because they consider only one phenotype. To date, there are few methods for analyzing multiple phenotypes. Methods: To address this problem, we propose a multivariate QMDR method (Multi-QMDR) for multivariate correlated phenotypes. We summarize the multivariate phenotypes into a univariate score by dimensional reduction analysis, and then classify the samples accordingly into highrisk and low-risk groups. We use different ways of summarizing mainly based on the principal components. Multi-QMDR is model-free and easy to implement. Results: Multi-QMDR is applied to lipid-related traits. The properties of Multi-QMDR were investigated through simulation studies. Empirical studies show that Multi-QMDR outperforms existing univariate and multivariate methods at identifying causal interactions. Conclusions: The Multi-QMDR approach improves the performance of QMDR when multiple quantitative phenotypes are available. (C) 2015 S. Karger AG, Basel
引用
收藏
页码:168 / 181
页数:14
相关论文
共 33 条
[1]   Association of the variants in the BUD13-ZNF259 genes and the risk of hyperlipidaemia [J].
Aung, Lynn Htet Htet ;
Yin, Rui-Xing ;
Wu, Dong-Feng ;
Wang, Wei ;
Liu, Cheng-Wu ;
Pan, Shang-Ling .
JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2014, 18 (07) :1417-1428
[2]   A Replication Study of GWAS-Derived Lipid Genes in Asian Indians: The Chromosomal Region 11q23.3 Harbors Loci Contributing to Triglycerides [J].
Braun, Timothy R. ;
Been, Latonya F. ;
Singhal, Akhil ;
Worsham, Jacob ;
Ralhan, Sarju ;
Wander, Gurpreet S. ;
Chambers, John C. ;
Kooner, Jaspal S. ;
Aston, Christopher E. ;
Sanghera, Dharambir K. .
PLOS ONE, 2012, 7 (05)
[3]   Model-Based Multifactor Dimensionality Reduction for detecting epistasis in case-control data in the presence of noise [J].
Cattaert, Tom ;
Calle, M. Luz ;
Dudek, Scott M. ;
John, Jestinah M. Mahachie ;
Van Lishout, Francois ;
Urrea, Victor ;
Ritchie, Marylyn D. ;
Van Steen, Kristel .
ANNALS OF HUMAN GENETICS, 2011, 75 :78-89
[4]   FAM-MDR: A Flexible Family-Based Multifactor Dimensionality Reduction Technique to Detect Epistasis Using Related Individuals [J].
Cattaert, Tom ;
Urrea, Victor ;
Naj, Adam C. ;
De Lobel, Lizzy ;
De Wit, Vanessa ;
Fu, Mao ;
John, Jestinah M. Mahachie ;
Shen, Haiqing ;
Luz Calle, M. ;
Ritchie, Marylyn D. ;
Edwards, Todd L. ;
Van Steen, Kristel .
PLOS ONE, 2010, 5 (04)
[5]   A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits [J].
Cho, Yoon Shin ;
Go, Min Jin ;
Kim, Young Jin ;
Heo, Jee Yeon ;
Oh, Ji Hee ;
Ban, Hyo-Jeong ;
Yoon, Dankyu ;
Lee, Mi Hee ;
Kim, Dong-Joon ;
Park, Miey ;
Cha, Seung-Hun ;
Kim, Jun-Woo ;
Han, Bok-Ghee ;
Min, Haesook ;
Ahn, Younjhin ;
Park, Man Suk ;
Han, Hye Ree ;
Jang, Hye-Yoon ;
Cho, Eun Young ;
Lee, Jong-Eun ;
Cho, Nam H. ;
Shin, Chol ;
Park, Taesung ;
Park, Ji Wan ;
Lee, Jong-Keuk ;
Cardon, Lon ;
Clarke, Geraldine ;
McCarthy, Mark I. ;
Lee, Jong-Young ;
Lee, Jong-Koo ;
Oh, Bermseok ;
Kim, Hyung-Lae .
NATURE GENETICS, 2009, 41 (05) :527-534
[6]   Multivariate generalized multifactor dimensionality reduction to detect gene-gene interactions [J].
Choi, Jiin ;
Park, Taesung .
BMC SYSTEMS BIOLOGY, 2013, 7
[7]   Odds ratio based multifactor-dimensionality reduction method for detecting gene-gene interactions [J].
Chung, Yujin ;
Lee, Seung Yeoun ;
Elston, Robert C. ;
Park, Taesung .
BIOINFORMATICS, 2007, 23 (01) :71-76
[8]   New wrinkles in lipoprotein lipase biology [J].
Davies, Brandon S. J. ;
Beigneux, Anne P. ;
Fong, Loren G. ;
Young, Stephen G. .
CURRENT OPINION IN LIPIDOLOGY, 2012, 23 (01) :35-42
[9]   A General Framework for Formal Tests of Interaction after Exhaustive Search Methods with Applications to MDR and MDR-PDT [J].
Edwards, Todd L. ;
Turner, Stephen D. ;
Torstenson, Eric S. ;
Dudek, Scott M. ;
Martin, Eden R. ;
Ritchie, Marylyn D. .
PLOS ONE, 2010, 5 (02)
[10]   VIEWPOINT Missing heritability and strategies for finding the underlying causes of complex disease [J].
Eichler, Evan E. ;
Flint, Jonathan ;
Gibson, Greg ;
Kong, Augustine ;
Leal, Suzanne M. ;
Moore, Jason H. ;
Nadeau, Joseph H. .
NATURE REVIEWS GENETICS, 2010, 11 (06) :446-450