The functional moderate deviations for Harris recurrent Markov chains and applications

被引:9
作者
Chen, X
Guillin, A [1 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Univ Paris 09, CEREMADE, F-75775 Paris 16, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2004年 / 40卷 / 01期
基金
美国国家科学基金会;
关键词
Harris recurrent Markov chain; p-regularity; moderate deviation; the law of the iterated logarithm;
D O I
10.1016/j.anihpb.2003.07.002
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study exponentially asymptotic behaviors for the trajectories of additive functionals of Harris Markov chains. In the main result, we establish a moderate deviation principle for a pair of additive functionals of different growth rates. Moreover, we give explicit formulas for the rate functions which exhibit a non-quadratic behavior. In particular, we achieve the functional moderate deviations in two different scales. As an application, we obtain a functional law of LIL, which leads to a variety of strong limit laws in the spirit of Strassen [Z. Wahr. Geb. 3 (1964) 211-226]. (C) 2003 Elsevier SAS. All rights reserved.
引用
收藏
页码:89 / 124
页数:36
相关论文
共 35 条
[1]   NEW APPROACH TO THE LIMIT THEORY OF RECURRENT MARKOV-CHAINS [J].
ATHREYA, KB ;
NEY, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 245 (NOV) :493-501
[2]   RELATIONAL PROPERTIES OF RECURRENT MARKOV PROCESSES [J].
AZEMA, J ;
DUFLO, M ;
REVUZ, D .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1969, 13 (3-4) :286-&
[3]   How often does a Harris recurrent Markov chain recur? [J].
Chen, X .
ANNALS OF PROBABILITY, 1999, 27 (03) :1324-1346
[4]   Moderate deviations for Markovian occupation times [J].
Chen, X .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2001, 94 (01) :51-70
[5]  
Chen X, 1999, MEM AM MATH SOC, V139, pXI
[6]   The law of the iterated logarithm for functionals of Harris recurrent Markov chains: Self normalization [J].
Chen, X .
JOURNAL OF THEORETICAL PROBABILITY, 1999, 12 (02) :421-445
[7]   On the limit laws of the second order for additive functionals of Harris recurrent Markov chains [J].
Chen, X .
PROBABILITY THEORY AND RELATED FIELDS, 2000, 116 (01) :89-123
[8]   ON THE ZEROS OF SIGMA-1N+/- [J].
CHUNG, KL ;
HUNT, GA .
ANNALS OF MATHEMATICS, 1949, 50 (02) :385-400
[9]   On additive functionals of Markov chains [J].
Csaki, E ;
Csorgo, M .
JOURNAL OF THEORETICAL PROBABILITY, 1995, 8 (04) :905-919
[10]  
Csaki E., 1996, STUD SCI MATH HUNG, V31, P47