Video Summarization Through Reinforcement Learning With a 3D Spatio-Temporal U-Net

被引:67
作者
Liu, Tianrui [1 ,2 ]
Meng, Qingjie [1 ]
Huang, Jun-Jie [2 ,3 ]
Vlontzos, Athanasios [1 ]
Rueckert, Daniel [1 ,4 ]
Kainz, Bernhard [1 ]
机构
[1] Imperial Coll London, Dept Comp, Biomed Image Anal Grp, London SW7 2RH, England
[2] Natl Univ Def Technol, Dept Comp Sci, Changsha 564211, Peoples R China
[3] Imperial Coll London, Dept Elect & Elect Engn, London SW7 2AZ, England
[4] Tech Univ Munich, Klinikum Rechts Isar, D-81675 Munich, Germany
基金
英国惠康基金; 英国工程与自然科学研究理事会;
关键词
Three-dimensional displays; Feature extraction; Biomedical imaging; Reinforcement learning; Task analysis; Solid modeling; Training; Video summarization; reinforcement learning; 3D convolutions; 3D U-Net; medical video processing; ultrasound;
D O I
10.1109/TIP.2022.3143699
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Intelligent video summarization algorithms allow to quickly convey the most relevant information in videos through the identification of the most essential and explanatory content while removing redundant video frames. In this paper, we introduce the 3DST-UNet-RL framework for video summarization. A 3D spatio-temporal U-Net is used to efficiently encode spatio-temporal information of the input videos for downstream reinforcement learning (RL). An RL agent learns from spatio-temporal latent scores and predicts actions for keeping or rejecting a video frame in a video summary. We investigate if real/inflated 3D spatio-temporal CNN features are better suited to learn representations from videos than commonly used 2D image features. Our framework can operate in both, a fully unsupervised mode and a supervised training mode. We analyse the impact of prescribed summary lengths and show experimental evidence for the effectiveness of 3DST-UNet-RL on two commonly used general video summarization benchmarks. We also applied our method on a medical video summarization task. The proposed video summarization method has the potential to save storage costs of ultrasound screening videos as well as to increase efficiency when browsing patient video data during retrospective analysis or audit without loosing essential information.
引用
收藏
页码:1573 / 1586
页数:14
相关论文
共 64 条
[1]   Evaluating reinforcement learning agents for anatomical landmark detection [J].
Alansary, Amir ;
Oktay, Ozan ;
Li, Yuanwei ;
Le Folgoc, Loic ;
Hou, Benjamin ;
Vaillant, Ghislain ;
Kamnitsas, Konstantinos ;
Vlontzos, Athanasios ;
Glocker, Ben ;
Kainz, Bernhard ;
Rueckert, Daniel .
MEDICAL IMAGE ANALYSIS, 2019, 53 :156-164
[2]  
[Anonymous], 2018, arXiv preprint arXiv:1807.03089
[3]  
[Anonymous], 2015, FET AN SCREEN PROGR
[4]  
[Anonymous], 2015, MEDICAL IMAGE COMPUT
[5]   Unsupervised Video Summarization via Attention-Driven Adversarial Learning [J].
Apostolidis, Evlampios ;
Adamantidou, Eleni ;
Metsai, Alexandros, I ;
Mezaris, Vasileios ;
Patras, Ioannis .
MULTIMEDIA MODELING (MMM 2020), PT I, 2020, 11961 :492-504
[6]   SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation [J].
Badrinarayanan, Vijay ;
Kendall, Alex ;
Cipolla, Roberto .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2017, 39 (12) :2481-2495
[7]   Weakly-Supervised Video Summarization Using Variational Encoder-Decoder and Web Prior [J].
Cai, Sijia ;
Zuo, Wangmeng ;
Davis, Larry S. ;
Zhang, Lei .
COMPUTER VISION - ECCV 2018, PT XIV, 2018, 11218 :193-210
[8]   Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset [J].
Carreira, Joao ;
Zisserman, Andrew .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :4724-4733
[9]   Less Is More: Picking Informative Frames for Video Captioning [J].
Chen, Yangyu ;
Wang, Shuhui ;
Zhang, Weigang ;
Huang, Qingming .
COMPUTER VISION - ECCV 2018, PT XIII, 2018, 11217 :367-384
[10]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49