Human brain structural connectivity matrices-ready for modelling

被引:30
作者
Skoch, Antonin [1 ,2 ,3 ]
Rehak Buckova, Barbora [1 ,3 ,4 ]
Mares, Jan [1 ,3 ]
Tintera, Jaroslav [1 ,2 ]
Sanda, Pavel [3 ]
Jajcay, Lucia [1 ,3 ,4 ]
Horacek, Jiri [1 ]
Spaniel, Filip [1 ]
Hlinka, Jaroslav [1 ,3 ]
机构
[1] Natl Inst Mental Hlth, Klecany, Czech Republic
[2] Inst Clin & Expt Med, Prague, Czech Republic
[3] Czech Acad Sci, Inst Comp Sci, Prague, Czech Republic
[4] Czech Tech Univ, Fac Elect Engn, Prague, Czech Republic
关键词
ROBUST; OPTIMIZATION; REGISTRATION; ACCURATE;
D O I
10.1038/s41597-022-01596-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The human brain represents a complex computational system, the function and structure of which may be measured using various neuroimaging techniques focusing on separate properties of the brain tissue and activity. We capture the organization of white matter fibers acquired by diffusion-weighted imaging using probabilistic diffusion tractography. By segmenting the results of tractography into larger anatomical units, it is possible to draw inferences about the structural relationships between these parts of the system. This pipeline results in a structural connectivity matrix, which contains an estimate of connection strength among all regions. However, raw data processing is complex, computationally intensive, and requires expert quality control, which may be discouraging for researchers with less experience in the field. We thus provide brain structural connectivity matrices in a form ready for modelling and analysis and thus usable by a wide community of scientists. The presented dataset contains brain structural connectivity matrices together with the underlying raw diffusion and structural data, as well as basic demographic data of 88 healthy subjects.
引用
收藏
页数:9
相关论文
共 41 条
[1]  
[Anonymous], 2006, Insight J
[2]   On the intersection between data quality and dynamical modelling of large-scale fMRI signals [J].
Aquino, Kevin M. ;
Fulcher, Ben ;
Oldham, Stuart ;
Parkes, Linden ;
Gollo, Leonardo ;
Deco, Gustavo ;
Fornito, Alex .
NEUROIMAGE, 2022, 256
[3]   Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? [J].
Behrens, T. E. J. ;
Berg, H. Johansen ;
Jbabdi, S. ;
Rushworth, M. F. S. ;
Woolrich, M. W. .
NEUROIMAGE, 2007, 34 (01) :144-155
[4]   Functional connectivity dynamically evolves on multiple time-scales over a static structural connectome: Models and mechanisms [J].
Cabral, Joana ;
Kringelbach, Morten L. ;
Deco, Gustavo .
NEUROIMAGE, 2017, 160 :84-96
[5]   Structural connectivity in schizophrenia and its impact on the dynamics of spontaneous functional networks [J].
Cabral, Joana ;
Fernandes, Henrique M. ;
Van Hartevelt, Tim J. ;
James, Anthony C. ;
Kringelbach, Morten L. ;
Deco, Gustavo .
CHAOS, 2013, 23 (04)
[6]   Chimera states in brain networks: Empirical neural vs. modular fractal connectivity [J].
Chouzouris, Teresa ;
Omelchenko, Iryna ;
Zakharova, Anna ;
Hlinka, Jaroslav ;
Jiruska, Premysl ;
Schoell, Eckehard .
CHAOS, 2018, 28 (04)
[7]  
Daffertshofer Andreas, 2011, Front Neuroinform, V5, P6, DOI 10.3389/fninf.2011.00006
[8]   Brain Modeling ToolKit: An open source software suite for multiscale modeling of brain circuits [J].
Dai, Kael ;
Gratiy, Sergey L. ;
Billeh, Yazan N. ;
Xu, Richard ;
Cai, Binghuang ;
Cain, Nicholas ;
Rimehaug, Atle E. ;
Stasik, Alexander J. ;
Einevoll, Gaute T. ;
Mihalas, Stefan ;
Koch, Christof ;
Arkhipov, Anton .
PLOS COMPUTATIONAL BIOLOGY, 2020, 16 (11)
[9]  
Friston Karl J., 1994, Human Brain Mapping, V2, P56, DOI 10.1002/hbm.460020107
[10]   Patient-Specific Network Connectivity Combined With a Next Generation Neural Mass Model to Test Clinical Hypothesis of Seizure Propagation [J].
Gerster, Moritz ;
Taher, Halgurd ;
Skoch, Antonin ;
Hlinka, Jaroslav ;
Guye, Maxime ;
Bartolomei, Fabrice ;
Jirsa, Viktor ;
Zakharova, Anna ;
Olmi, Simona .
FRONTIERS IN SYSTEMS NEUROSCIENCE, 2021, 15