Quantum Hall states on the cylinder as unitary matrix Chern-Simons theory

被引:0
|
作者
Polychronakos, AP [1 ]
机构
[1] CUNY City Coll, Dept Phys, New York, NY 10031 USA
[2] Rockefeller Univ, Dept Phys, New York, NY 10021 USA
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2001年 / 06期
关键词
Chern-Simons theories; non-commutative geometry; matrix models; integrable hierarchies;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We propose a unitary matrix Chern-Simons model representing fractional quantum Hall fluids of finite extent on the cylinder. A mapping between the states of the two systems is established. Standard properties of Laughlin theory, such as the quantization of the inverse filling fraction and of the quasiparticle number, are reproduced by the quantum mechanics of the matrix model. We also point out that this system is holographically described in terms of the one-dimensional Sutherland integrable particle system.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Quantum Hall states as matrix Chern-Simons theory
    Polychronakos, AP
    JOURNAL OF HIGH ENERGY PHYSICS, 2001, (04):
  • [2] Dualities in quantum Hall system and noncommutative Chern-Simons theory
    Gorsky, A
    Kogan, II
    Korthals-Altes, C
    JOURNAL OF HIGH ENERGY PHYSICS, 2002, (01):
  • [3] Matrix model and Chern-Simons theory
    Kluson, J
    PHYSICS LETTERS B, 2001, 505 (1-4) : 243 - 248
  • [4] The quantum theory of Chern-Simons supergravity
    L. Andrianopoli
    B. L. Cerchiai
    P. A. Grassi
    M. Trigiante
    Journal of High Energy Physics, 2019
  • [5] The quantum theory of Chern-Simons supergravity
    Andrianopoli, L.
    Cerchiai, B. L.
    Grassi, P. A.
    Trigiante, M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (06)
  • [6] Finite noncommutative Chern-Simons with a Wilson line and the quantum hall effect
    Morariu, B
    Polychronakos, AP
    JOURNAL OF HIGH ENERGY PHYSICS, 2001, (07):
  • [7] Fractional quantum Hall effect via holography: Chern-Simons, edge states and hierarchy
    Fujita, Mitsutoshi
    Li, Wei
    Ryu, Shinsei
    Takayanagi, Tadashi
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (06):
  • [8] Finite Chern-Simons matrix model - algebraic approach
    Jonke, L
    Meljanac, S
    JOURNAL OF HIGH ENERGY PHYSICS, 2002, (01):
  • [9] Circuit complexity of knot states in Chern-Simons theory
    Giancarlo Camilo
    Dmitry Melnikov
    Fábio Novaes
    Andrea Prudenziati
    Journal of High Energy Physics, 2019
  • [10] Poisson Chern-Simons gauge theory
    Morariu, B
    JOURNAL OF HIGH ENERGY PHYSICS, 2001, (10):