VECTOR LATTICES IN SYNAPTIC ALGEBRAS

被引:4
|
作者
Foulis, David J. [1 ]
Jencova, Anna [2 ]
Pulmannova, Sylvia [2 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, 1 Sutton Court, Amherst, MA 01002 USA
[2] Slovak Acad Sci, Math Inst, Stefanikova 49, Bratislava 81473, Slovakia
关键词
synaptic algebra; vector lattice; effect algebra; generalized supremum and infimum; commutative; monotone square-root property; PROJECTIONS; MV;
D O I
10.1515/ms-2017-0066
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A synaptic algebra A is a generalization of the self-adjoint part of a von Neumann algebra. We study a linear subspace V of A in regard to the question of when V is a vector lattice. Our main theorem states that if V contains the identity element of A and is closed under the formation of both the absolute value and the carrier of its elements, then V is a vector lattice if and only if the elements of V commute pairwise. (C) 2017 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:1509 / 1524
页数:16
相关论文
共 50 条
  • [41] On the structure of orthosymmetric bilinear operators on vector lattices
    A. G. Kusraev
    Doklady Mathematics, 2006, 73 : 331 - 333
  • [42] b-property of sublattices in vector lattices
    Gorokhova, Svetlana
    Alpay, Safak
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (04) : 1555 - 1563
  • [43] On some vector lattices of operators and their finite elements
    Hahn, Norbert
    Hahn, Siegfried
    Weber, Martin R.
    POSITIVITY, 2009, 13 (01) : 145 - 163
  • [44] Canonical extensions of bounded archimedean vector lattices
    Bezhanishvili, Guram
    Morandi, Patrick J.
    Olberding, Bruce
    ALGEBRA UNIVERSALIS, 2018, 79 (01)
  • [45] Homogeneous orthogonally additive polynomials on vector lattices
    Kusraeva, Z. A.
    MATHEMATICAL NOTES, 2012, 91 (5-6) : 657 - 662
  • [46] Homogeneous orthogonally additive polynomials on vector lattices
    Z. A. Kusraeva
    Mathematical Notes, 2012, 91 : 657 - 662
  • [47] Canonical extensions of bounded archimedean vector lattices
    Guram Bezhanishvili
    Patrick J. Morandi
    Bruce Olberding
    Algebra universalis, 2018, 79
  • [48] On extensions of some nonlinear maps in vector lattices
    Abasov, Nariman
    Pliev, Marat
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (01) : 516 - 527
  • [49] uτ-convergence in locally solid vector lattices
    Dabboorasad, Y. A.
    Emelyanov, E. Y.
    Marabeh, M. A. A.
    POSITIVITY, 2018, 22 (04) : 1065 - 1080
  • [50] Orthogonally additive operators on complex vector lattices
    Pliev, Marat
    Sukochev, Fedor
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 541 (02)