VECTOR LATTICES IN SYNAPTIC ALGEBRAS

被引:4
|
作者
Foulis, David J. [1 ]
Jencova, Anna [2 ]
Pulmannova, Sylvia [2 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, 1 Sutton Court, Amherst, MA 01002 USA
[2] Slovak Acad Sci, Math Inst, Stefanikova 49, Bratislava 81473, Slovakia
关键词
synaptic algebra; vector lattice; effect algebra; generalized supremum and infimum; commutative; monotone square-root property; PROJECTIONS; MV;
D O I
10.1515/ms-2017-0066
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A synaptic algebra A is a generalization of the self-adjoint part of a von Neumann algebra. We study a linear subspace V of A in regard to the question of when V is a vector lattice. Our main theorem states that if V contains the identity element of A and is closed under the formation of both the absolute value and the carrier of its elements, then V is a vector lattice if and only if the elements of V commute pairwise. (C) 2017 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:1509 / 1524
页数:16
相关论文
共 50 条