VECTOR LATTICES IN SYNAPTIC ALGEBRAS

被引:4
|
作者
Foulis, David J. [1 ]
Jencova, Anna [2 ]
Pulmannova, Sylvia [2 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, 1 Sutton Court, Amherst, MA 01002 USA
[2] Slovak Acad Sci, Math Inst, Stefanikova 49, Bratislava 81473, Slovakia
关键词
synaptic algebra; vector lattice; effect algebra; generalized supremum and infimum; commutative; monotone square-root property; PROJECTIONS; MV;
D O I
10.1515/ms-2017-0066
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A synaptic algebra A is a generalization of the self-adjoint part of a von Neumann algebra. We study a linear subspace V of A in regard to the question of when V is a vector lattice. Our main theorem states that if V contains the identity element of A and is closed under the formation of both the absolute value and the carrier of its elements, then V is a vector lattice if and only if the elements of V commute pairwise. (C) 2017 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:1509 / 1524
页数:16
相关论文
共 50 条
  • [21] Unital hyperarchimedean vector lattices
    Ball, Richard N.
    Marra, Vincenzo
    TOPOLOGY AND ITS APPLICATIONS, 2014, 170 : 10 - 24
  • [22] Envelopes and inequalities in vector lattices
    A. G. Kusraev
    S. S. Kutateladze
    Positivity, 2011, 15 : 661 - 676
  • [23] Atomic Operators in Vector Lattices
    Ralph Chill
    Marat Pliev
    Mediterranean Journal of Mathematics, 2020, 17
  • [24] LIMIT LAWS IN VECTOR LATTICES
    Stoica, George
    QUAESTIONES MATHEMATICAE, 2015, 38 (06) : 829 - 833
  • [25] Direct limits in categories of normed vector lattices and Banach lattices
    Ding, Chun
    de Jeu, Marcel
    POSITIVITY, 2023, 27 (03)
  • [26] Direct limits in categories of normed vector lattices and Banach lattices
    Chun Ding
    Marcel de Jeu
    Positivity, 2023, 27
  • [27] Synaptic Algebras as Models for Quantum Mechanics
    Sylvia Pulmannová
    International Journal of Theoretical Physics, 2021, 60 : 483 - 498
  • [28] Finitely extendable functionals on vector lattices
    Veksler, AI
    POSITIVITY, 1997, 1 (03) : 219 - 237
  • [29] Vector lattices of almost polynomial sequences
    Wickstead, A. W.
    POSITIVITY, 2010, 14 (03) : 407 - 420
  • [30] The Ito integral for martingales in vector lattices
    Grobler, Jacobus J.
    Labuschagne, Coenraad C. A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 450 (02) : 1245 - 1274