VECTOR LATTICES IN SYNAPTIC ALGEBRAS

被引:4
|
作者
Foulis, David J. [1 ]
Jencova, Anna [2 ]
Pulmannova, Sylvia [2 ]
机构
[1] Univ Massachusetts, Dept Math & Stat, 1 Sutton Court, Amherst, MA 01002 USA
[2] Slovak Acad Sci, Math Inst, Stefanikova 49, Bratislava 81473, Slovakia
关键词
synaptic algebra; vector lattice; effect algebra; generalized supremum and infimum; commutative; monotone square-root property; PROJECTIONS; MV;
D O I
10.1515/ms-2017-0066
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A synaptic algebra A is a generalization of the self-adjoint part of a von Neumann algebra. We study a linear subspace V of A in regard to the question of when V is a vector lattice. Our main theorem states that if V contains the identity element of A and is closed under the formation of both the absolute value and the carrier of its elements, then V is a vector lattice if and only if the elements of V commute pairwise. (C) 2017 Mathematical Institute Slovak Academy of Sciences
引用
收藏
页码:1509 / 1524
页数:16
相关论文
共 50 条
  • [1] VECTOR LATTICES AND f-ALGEBRAS: THE CLASSICAL INEQUALITIES
    Buskes, G.
    Schwanke, C.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 12 (01): : 191 - 205
  • [2] Invariant homomorphisms of nonstandard enlargements of boolean algebras and vector lattices
    È. Yu. Emel'yanov
    Siberian Mathematical Journal, 1997, 38 : 244 - 252
  • [4] Banach Synaptic Algebras
    Foulis, David J.
    Pulmannov, Sylvia
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2018, 57 (04) : 1103 - 1119
  • [5] Multiplicative order compact operators between vector lattices and Riesz algebras
    Aydin, Abdullah
    Gorokhova, Svetlana
    FILOMAT, 2024, 38 (19) : 6743 - 6751
  • [6] Synaptic algebras
    Foulis, David J.
    MATHEMATICA SLOVACA, 2010, 60 (05) : 631 - 654
  • [7] Synaptic Algebras as Models for Quantum Mechanics
    Pulmannova, Sylvia
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2021, 60 (02) : 483 - 498
  • [8] Symmetries in synaptic algebras
    Foulis, David J.
    Pulmannova, Sylvia
    MATHEMATICA SLOVACA, 2014, 64 (03) : 751 - 776
  • [9] STATES AND SYNAPTIC ALGEBRAS
    Foulis, David J.
    Jencova, Anna
    Pulmannova, Ylvia
    REPORTS ON MATHEMATICAL PHYSICS, 2017, 79 (01) : 13 - 32
  • [10] Banach Synaptic Algebras
    David J. Foulis
    Sylvia Pulmannov
    International Journal of Theoretical Physics, 2018, 57 : 1103 - 1119