Spectral techniques applied to sparse random graphs

被引:150
|
作者
Feige, U [1 ]
Ofek, E [1 ]
机构
[1] Weizmann Inst Sci, Dept Comp Sci & Appl Math, IL-76100 Rehovot, Israel
关键词
D O I
10.1002/rsa.20089
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We analyze the eigenvalue gap for the adjacency matrices of sparse random graphs. Let lambda(1) >= (...) >= lambda(n) be the eigenvalues of an n-vertex graph, and lambda = max[lambda(2), P.,,11, Let c be a large enough constant. For graphs of average degree d = c log n it is well known that lambda(1) >= d, and we show that lambda = O(root d). For d = c it is no longer true that lambda = O(root d), but we show that by removing a small number of vertices of highest degree in G, one gets a graph G' for which lambda = O(root d). Our proofs are based on the techniques of Friedman Kahn and Szemeredi from STOC 1989, who proved similar results for regular graphs. Our results are useful for extending the analysis of certain heuristics to sparser instances of NP-hard problems. We illustrate this by removing some unnecessary logarithmic factors in the density of k-SAT formulas that are refuted by the algorithm of Goerdt and Krivelevich from STACS 2001. (c) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:251 / 275
页数:25
相关论文
共 50 条
  • [41] INDEPENDENT SETS IN RANDOM SPARSE GRAPHS
    GAZMURI, PG
    NETWORKS, 1984, 14 (03) : 367 - 377
  • [42] Independent Sets of Random Trees and Sparse Random Graphs
    Heilman, Steven
    JOURNAL OF GRAPH THEORY, 2025,
  • [43] CUTOFF FOR NONBACKTRACKING RANDOM WALKS ON SPARSE RANDOM GRAPHS
    Ben-Hamou, Anna
    Salez, Justin
    ANNALS OF PROBABILITY, 2017, 45 (03): : 1752 - 1770
  • [44] Spectral partitioning of random graphs
    McSherry, F
    42ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2001, : 529 - 537
  • [45] Spectral radii of sparse random matrices
    Benaych-Georges, Florent
    Bordenave, Charles
    Knowles, Antti
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (03): : 2141 - 2161
  • [46] Spectral Analysis of Random Sparse Matrices
    Ando, Tomonori
    Kabashima, Yoshiyuki
    Takahashi, Hisanao
    Watanabe, Osamu
    Yamamoto, Masaki
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2011, E94A (06) : 1247 - 1256
  • [47] The spectral gap of sparse random digraphs
    Coste, Simon
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (02): : 644 - 684
  • [48] On-line coloring of sparse random graphs and random trees
    Pittel, B
    Weishaar, RS
    JOURNAL OF ALGORITHMS, 1997, 23 (01) : 195 - 205
  • [49] Fast Generation of Sparse Random Kernel Graphs
    Hagberg, Aric
    Lemons, Nathan
    PLOS ONE, 2015, 10 (09):
  • [50] Index statistical properties of sparse random graphs
    Metz, F. L.
    Stariolo, Daniel A.
    PHYSICAL REVIEW E, 2015, 92 (04):