Spectral techniques applied to sparse random graphs

被引:150
作者
Feige, U [1 ]
Ofek, E [1 ]
机构
[1] Weizmann Inst Sci, Dept Comp Sci & Appl Math, IL-76100 Rehovot, Israel
关键词
D O I
10.1002/rsa.20089
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We analyze the eigenvalue gap for the adjacency matrices of sparse random graphs. Let lambda(1) >= (...) >= lambda(n) be the eigenvalues of an n-vertex graph, and lambda = max[lambda(2), P.,,11, Let c be a large enough constant. For graphs of average degree d = c log n it is well known that lambda(1) >= d, and we show that lambda = O(root d). For d = c it is no longer true that lambda = O(root d), but we show that by removing a small number of vertices of highest degree in G, one gets a graph G' for which lambda = O(root d). Our proofs are based on the techniques of Friedman Kahn and Szemeredi from STOC 1989, who proved similar results for regular graphs. Our results are useful for extending the analysis of certain heuristics to sparser instances of NP-hard problems. We illustrate this by removing some unnecessary logarithmic factors in the density of k-SAT formulas that are refuted by the algorithm of Goerdt and Krivelevich from STACS 2001. (c) 2005 Wiley Periodicals, Inc.
引用
收藏
页码:251 / 275
页数:25
相关论文
共 50 条
[31]   Hamiltonian completions of sparse random graphs [J].
Gamarnik, D ;
Sviridenko, M .
DISCRETE APPLIED MATHEMATICS, 2005, 152 (1-3) :139-158
[32]   The largest hole in sparse random graphs [J].
Draganic, Nemanja ;
Glock, Stefan ;
Krivelevich, Michael .
RANDOM STRUCTURES & ALGORITHMS, 2022, 61 (04) :666-677
[33]   A note on coloring sparse random graphs [J].
Sommer, Christian .
DISCRETE MATHEMATICS, 2009, 309 (10) :3381-3384
[34]   Cycle lengths in sparse random graphs [J].
Alon, Yahav ;
Krivelevich, Michael ;
Lubetzky, Eyal .
RANDOM STRUCTURES & ALGORITHMS, 2022, 61 (03) :444-461
[35]   Chromatic Thresholds in Sparse Random Graphs [J].
Allen, Peter ;
Bottcher, Julia ;
Griffiths, Simon ;
Kohayakawa, Yoshiharu ;
Morris, Robert .
RANDOM STRUCTURES & ALGORITHMS, 2017, 51 (02) :215-236
[36]   Majority dynamics on sparse random graphs [J].
Chakraborti, Debsoumya ;
Kim, Jeong Han ;
Lee, Joonkyung ;
Tran, Tuan .
RANDOM STRUCTURES & ALGORITHMS, 2023, 63 (01) :171-191
[37]   The friendship paradox for sparse random graphs [J].
Hazra, Rajat Subhra ;
den Hollander, Frank ;
Parvaneh, Azadeh .
PROBABILITY THEORY AND RELATED FIELDS, 2025,
[38]   EXTREMAL CUTS OF SPARSE RANDOM GRAPHS [J].
Dembo, Amir ;
Montanari, Andrea ;
Sen, Subhabrata .
ANNALS OF PROBABILITY, 2017, 45 (02) :1190-1217
[39]   A note on the width of sparse random graphs [J].
Do, Tuan Anh ;
Erde, Joshua ;
Kang, Mihyun .
JOURNAL OF GRAPH THEORY, 2024, 106 (02) :273-295
[40]   Sparse quasi-random graphs [J].
Chung, F ;
Graham, R .
COMBINATORICA, 2002, 22 (02) :217-244