A novel PrBaCo2O5+σ-BaZr0.1Ce0.7Y0.1Yb0.1O3 composite cathode for proton-conducting solid oxide fuel cells

被引:53
作者
Liu, Bo [1 ]
Jia, Lichao [1 ]
Chi, Bo [1 ]
Pu, Jian [1 ]
Li, Jian [1 ]
机构
[1] Huazhong Univ Sci & Technol, Ctr Fuel Cell Innovat, Sch Mat Sci & Engn, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Solid oxide fuel cell; Proton ceramics; Composite cathode; Impregnation; Distribution of relaxation time; MIXED ION CONDUCTOR; HIGH-PERFORMANCE; RELAXATION-TIMES; ELECTROLYTE; PRBACO2O5+X; DIFFUSION;
D O I
10.1016/j.compositesb.2020.107936
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
PrBaCo2O5+sigma-BaZr0.1Ce0.7Y0.1Yb0.1O3 (PBC-BZCYYb) composite cathodes are prepared by repeating impregnation (up to 5 times) of PBC into BZCYYb scaffold for proton-conducting solid oxide fuel cells with Ni-BZCYYb anode and BZCYYb electrolyte. The single-cells are evaluated electrochemically at temperatures between 600 and 750 degrees C using humidified hydrogen (similar to 3% H2O) as the fuel and air as the oxidant, and the corresponding electrochemical impedance spectra of the cells acquired at open circuit voltage are analyzed by the distribution of relaxation time. The optimal PBC loading in the composite cathode is 36 wt%, which is obtained by 4 times of PBC impregnation and leads to the highest cell performance with a peak power density of 0.49 W cm(-2) and the smallest polarization resistance of 0.078 Omega cm(2) at 750 degrees C. With the decrease of temperature from 750 to 600 degrees C, the peak power density is decreased from 0.49 to 0.17 W cm(-2) and the polarization resistance is increased from 0.078 to 1.085 Omega cm(2), and the dominating processes of polarization are changed from those in the anode to the ones in the cathode.
引用
收藏
页数:7
相关论文
共 36 条
[1]   Structural characterisation of REBaCo2O6-δ phases (RE = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho) [J].
Anderson, PS ;
Kirk, CA ;
Knudsen, J ;
Reaney, IM ;
West, AR .
SOLID STATE SCIENCES, 2005, 7 (10) :1149-1156
[2]   Tailoring the Cathode-Electrolyte Interface with Nanoparticles for Boosting the Solid Oxide Fuel Cell Performance of Chemically Stable Proton-Conducting Electrolytes [J].
Bi, Lei ;
Shafi, Shahid P. ;
Da'as, Eman Husni ;
Traversa, Enrico .
SMALL, 2018, 14 (32)
[3]   Use of a distribution function of relaxation times (DFRT) in impedance analysis of SOFC electrodes [J].
Boukamp, Bernard A. ;
Rolle, Aurelie .
SOLID STATE IONICS, 2018, 314 :103-111
[4]   Analysis and Application of Distribution of Relaxation Times in Solid State Ionics [J].
Boukamp, Bernard A. ;
Rolle, Aurelie .
SOLID STATE IONICS, 2017, 302 :12-18
[5]   A novel layered perovskite Nd(Ba0.4Sr0.4Ca0.2)Co1.6Fe0.4O5+δ as cathode for proton-conducting solid oxide fuel cells [J].
Chen, Junyu ;
Li, Jin ;
Jia, Lichao ;
Moussa, Ibrahim ;
Chi, Bo ;
Pu, Jian ;
Li, Jian .
JOURNAL OF POWER SOURCES, 2019, 428 :13-19
[6]   Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells [J].
Choi, Sihyuk ;
Kucharczyk, Chris J. ;
Liang, Yangang ;
Zhang, Xiaohang ;
Takeuchi, Ichiro ;
Ji, Ho-Il ;
Haile, Sossina M. .
NATURE ENERGY, 2018, 3 (03) :202-210
[7]   Electrochemical analysis of high-performance protonic ceramic fuel cells based on a columnar-structured thin electrolyte [J].
Choi, Sung Min ;
An, Hyegsoon ;
Yoon, Kyung Joong ;
Kim, Byung-Kook ;
Lee, Hae-Weon ;
Son, Ji-Won ;
Kim, Hyoungchul ;
Shin, Dongwook ;
Ji, Ho-Il ;
Lee, Jong-Ho .
APPLIED ENERGY, 2019, 233 :29-36
[8]   Electrochemical performance of BaZr0.1Ce0.7Y0.1Yb0.1O3-δ electrolyte based proton-conducting SOFC solid oxide fuel cell with layered perovskite PrBaCo2O5+δ cathode [J].
Ding, Hanping ;
Xie, Yuanyuan ;
Xue, Xingjian .
JOURNAL OF POWER SOURCES, 2011, 196 (05) :2602-2607
[9]   Readily processed protonic ceramic fuel cells with high performance at low temperatures [J].
Duan, Chuancheng ;
Tong, Jianhua ;
Shang, Meng ;
Nikodemski, Stefan ;
Sanders, Michael ;
Ricote, Sandrine ;
Almansoori, Ali ;
O'Hayre, Ryan .
SCIENCE, 2015, 349 (6254) :1321-1326
[10]   Materials challenges toward proton-conducting oxide fuel cells: a critical review [J].
Fabbri, Emiliana ;
Pergolesi, Daniele ;
Traversa, Enrico .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (11) :4355-4369