Quasi-periodic solutions for fully nonlinear forced reversible Schrodinger equations

被引:86
作者
Feola, Roberto [1 ]
Procesi, Michela [1 ]
机构
[1] Univ Roma La Sapienza, I-00185 Rome, Italy
基金
欧洲研究理事会;
关键词
Nonlinear Schrodinger equation; KAM for PDEs; Fully nonlinear PDEs; Nash-Moser theory; Quasi-periodic solutions; Small divisors; PARTIAL-DIFFERENTIAL-EQUATIONS; WAVE-EQUATIONS; KAM THEOREM; PERTURBATIONS; NLS;
D O I
10.1016/j.jde.2015.04.025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider a class of fully nonlinear forced and reversible Schrodinger equations and prove existence and stability of quasi-periodic solutions. We use a Nash-Moser algorithm together with a reducibility theorem on the linearized operator in a neighborhood of zero. Due to the presence of the highest order derivatives in the non-linearity the classic KAM-reducibility argument fails and one needs to use a wider class of changes of variables such as diffeomorphisms of the torus and pseudo-differential operators. This procedure automatically produces a change of variables, well defined on the phase space of the equation, which diagonalizes the operator linearized at the solution. This gives the linear stability. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:3389 / 3447
页数:59
相关论文
共 32 条
[1]  
[Anonymous], 2005, ANN MATH STUD
[2]  
BALDI P, 2014, ARXIV14043125
[3]   KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation [J].
Baldi, Pietro ;
Berti, Massimiliano ;
Montalto, Riccardo .
MATHEMATISCHE ANNALEN, 2014, 359 (1-2) :471-536
[4]   Periodic solutions of fully nonlinear autonomous equations of Benjamin-Ono type [J].
Baldi, Pietro .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (01) :33-77
[5]  
Baldi P, 2009, ANN SCUOLA NORM-SCI, V8, P117
[6]   An abstract Nash-Moser theorem with parameters and applications to PDEs [J].
Berti, M. ;
Bolle, P. ;
Procesi, M. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (01) :377-399
[7]  
Berti M., 2015, FIELDS I CO IN PRESS
[8]  
Berti M., 2013, ANN SCI ECOLE NORM S, V46, P299
[9]   An Abstract Nash-Moser Theorem and Quasi-Periodic Solutions for NLW and NLS on Compact Lie Groups and Homogeneous Manifolds [J].
Berti, Massimiliano ;
Corsi, Livia ;
Procesi, Michela .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 334 (03) :1413-1454
[10]   KAM for Reversible Derivative Wave Equations [J].
Berti, Massimiliano ;
Biasco, Luca ;
Procesi, Michela .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 212 (03) :905-955