Population genetic structure of Anopheles arabiensis and Anopheles gambiae in a malaria endemic region of southern Tanzania

被引:15
作者
Ng'habi, Kija R. [1 ]
Knols, Bart G. J. [2 ,3 ]
Lee, Yoosook [4 ]
Ferguson, Heather M. [5 ]
Lanzaro, Gregory C. [4 ]
机构
[1] Ifakara Hlth Inst, Biomed & Environm Themat Grp, Ifakara, Tanzania
[2] Univ Amsterdam, Acad Med Ctr, Div Infect Dis Trop Med & AIDS, NL-1105 AZ Amsterdam, Netherlands
[3] K&S Consulting, NL-6669 CP Dodewaard, Netherlands
[4] Univ Calif Davis, Dept Pathol Microbiol & Immunol, Sch Vet Med, Davis, CA USA
[5] Univ Glasgow, Inst Biodivers Anim Hlth & Comparat Med, Glasgow G12 8QQ, Lanark, Scotland
基金
英国生物技术与生命科学研究理事会;
关键词
WEST-AFRICA; LINKAGE DISEQUILIBRIUM; NATURAL-POPULATIONS; CHROMOSOMAL FORM; VECTOR; DIFFERENTIATION; MOSQUITOS; COMPLEX; TRANSMISSION; CULICIDAE;
D O I
10.1186/1475-2875-10-289
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
Background: Genetic diversity is a key factor that enables adaptation and persistence of natural populations towards environmental conditions. It is influenced by the interaction of a natural population's dynamics and the environment it inhabits. Anopheles gambiae s.s. and Anopheles arabiensis are the two major and widespread malaria vectors in sub-Saharan Africa. Several studies have examined the ecology and population dynamics of these vectors. Ecological conditions along the Kilombero valley in Tanzania influence the distribution and population density of these two vector species. It remains unclear whether the ecological diversity within the Kilombero valley has affected the population structure of An. gambiae s.l. populations. The goal of this study was to characterise the genetic structure of sympatric An. gambiae s.s and An. arabiensis populations along the Kilombero valley. Methodology: Mosquitoes were collected from seven locations in Tanzania: six from the Kilombero valley and one outside the valley (similar to 700 km away) as an out-group. To archive a genome-wide coverage, 13 microsatellite markers from chromosomes X, 2 and 3 were used. Results: High levels of genetic differentiation among An. arabiensis populations was observed, as opposed to An. gambiae s.s., which was genetically undifferentiated across the 6,650 km(2) of the Kilombero valley landscape. It appears that genetic differentiation is not attributed to physical barriers or distance, but possibly by ecological diversification within the Kilombero valley. Genetic divergence among An. arabiensis populations (F-ST = 0.066) was higher than that of the well-known M and S forms of An. gambiae s.s. in West and Central Africa (F-ST = 0.035), suggesting that these populations are maintained by some level of reproductive isolation. Conclusion: It was hypothesized that ecological diversification across the valley may be a driving force for observed An. arabiensis genetic divergence. The impact of the observed An. arabiensis substructure to the prospects for new vector control approaches is discussed.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Genetic Structure of a Local Population of the Anopheles gambiae Complex in Burkina Faso
    Markianos, Kyriacos
    Bischoff, Emmanuel
    Mitri, Christian
    Guelbeogo, Wamdaogo M.
    Gneme, Awa
    Eiglmeier, Karin
    Holm, Inge
    Sagnon, N'Fale
    Vernick, Kenneth D.
    Riehle, Michelle M.
    [J]. PLOS ONE, 2016, 11 (01):
  • [22] Reduced human-biting preferences of the African malaria vectors Anopheles arabiensis and Anopheles gambiae in an urban context: controlled, competitive host-preference experiments in Tanzania
    Yeromin P. Mlacha
    Prosper P. Chaki
    Athuman Muhili
    Dennis J. Massue
    Marcel Tanner
    Silas Majambere
    Gerry F. Killen
    Nicodem J. Govella
    [J]. Malaria Journal, 19
  • [23] Characterizing pyrethroid resistance and mechanisms in Anopheles gambiae (s.s.) and Anopheles arabiensis from 11 districts in Uganda
    Mawejje, Henry Ddumba
    Weetman, David
    Epstein, Adrienne
    Lynd, Amy
    Opigo, Jimmy
    Maiteki-Sebuguzi, Catherine
    Lines, Jo
    Kamya, Moses R.
    Rosenthal, Philip J.
    Donnelly, Martin J.
    Dorsey, Grant
    Staedke, Sarah G.
    [J]. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES, 2023, 3
  • [24] Introgression of a synthetic sex ratio distortion system from Anopheles gambiae into Anopheles arabiensis
    Bernardini, Federica
    Kriezis, Antonios
    Galizi, Roberto
    Nolan, Tony
    Crisanti, Andrea
    [J]. SCIENTIFIC REPORTS, 2019, 9 (1)
  • [25] The Genetic Basis of Host Preference and Resting Behavior in the Major African Malaria Vector, Anopheles arabiensis
    Main, Bradley J.
    Lee, Yoosook
    Ferguson, Heather M.
    Kreppel, Katharina S.
    Kihonda, Anicet
    Govella, Nicodem J.
    Collier, Travis C.
    Cornel, Anthony J.
    Eskin, Eleazar
    Kang, Eun Yong
    Nieman, Catelyn C.
    Weakley, Allison M.
    Lanzaro, Gregory C.
    [J]. PLOS GENETICS, 2016, 12 (09):
  • [26] Genome variation and population structure among 1142 mosquitoes of the African malaria vector species Anopheles gambiae and Anopheles coluzzii
    Clarkson, Chris S.
    Miles, Alistair
    Harding, Nicholas J.
    Lucas, Eric R.
    Battey, C. J.
    Amaya-Romero, Jorge Edouardo
    Kern, Andrew D.
    Fontaine, Michael C.
    Donnelly, Martin J.
    Lawniczak, Mara K. N.
    Kwiatkowski, Dominic P.
    Donnelly, Martin J.
    Ayala, Diego
    Besansky, Nora J.
    Burt, Austin
    Caputo, Beniamino
    della Torre, Alessandra
    Fontaine, Michael C.
    Godfray, H. Charles J.
    Hahn, Matthew W.
    Kern, Andrew D.
    Kwiatkowski, Dominic P.
    Lawniczak, Mara K. N.
    Midega, Janet
    O'Loughlin, Samantha
    Pinto, Joao
    Riehle, Michelle M.
    Sharakhov, Igor
    Schrider, Daniel R.
    Vernick, Kenneth D.
    Weetman, David
    Wilding, Craig S.
    White, Bradley J.
    Troco, Arlete D.
    Pinto, Joao
    Cano, Jorge
    Diabate, Abdoulaye
    Burt, Austin
    Costantini, Carlo
    Rohatgi, Kyanne R.
    Besansky, Nora J.
    Constant, Edi
    Weetman, David
    Elissa, Nohal
    Nwakanma, Davis C.
    Jawara, Musa
    Essandoh, John
    Coulibaly, Boubacar
    Riehle, Michelle M.
    Vernick, Kenneth D.
    [J]. GENOME RESEARCH, 2020, 30 (10) : 1533 - 1546
  • [27] An Algal Diet Accelerates Larval Growth of Anopheles gambiae (Diptera: Culicidae) and Anopheles arabiensis (Diptera: Culicidae)
    Tuno, N.
    Kohzu, A.
    Tayasu, I.
    Nakayama, T.
    Githeko, A.
    Yan, G.
    [J]. JOURNAL OF MEDICAL ENTOMOLOGY, 2018, 55 (03) : 600 - 608
  • [28] Environmental factors associated with the malaria vectors Anopheles gambiae and Anopheles funestus in Kenya
    Kelly-Hope, Louise A.
    Hemingway, Janet
    McKenzie, F. Ellis
    [J]. MALARIA JOURNAL, 2009, 8
  • [29] Spatial Anopheles arabiensis (Diptera: Culicidae) insecticide resistance patterns across malaria-endemic regions of Botswana
    Buxton, Mmabaledi
    Wasserman, Ryan J.
    Nyamukondiwa, Casper
    [J]. MALARIA JOURNAL, 2020, 19 (01)
  • [30] Genomic signatures of population decline in the malaria mosquito Anopheles gambiae
    Samantha M. O’Loughlin
    Stephen M. Magesa
    Charles Mbogo
    Franklin Mosha
    Janet Midega
    Austin Burt
    [J]. Malaria Journal, 15