Scalable 2D convex hull and triangulation algorithms for coarse grained multicomputers

被引:9
作者
Diallo, M
Ferreira, A
Rau-Chaplin, A
Ubeda, S
机构
[1] IFMA, LIMOS, F-63175 Aubiere, France
[2] CNRS, Projet SLOOP, INRIA, F-06902 Sophia Antipolis, France
[3] Dalhousie Univ, Fac Comp Sci, DalTech, Halifax, NS B3J 2X4, Canada
[4] ENS Lyon, LIP, F-69364 Lyon 7, France
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
D O I
10.1006/jpdc.1998.1503
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we describe scalable parallel algorithms for building the convex hull and a triangulation of n coplanar points. These algorithms are designed for the coarse grained multicomputer model: p processors with O(n/p) >> O(1) local memory each, connected to some arbitrary interconnection network. They scale over a large range of values of n and p, assuming only that n greater than or equal to p(1 + epsilon) (epsilon > 0) and require time O((T-sequential/P) + T-s(n, p)), where T-s(n, p) refers to the time of a global sort of n data on ap processor machine. Furthermore, they involve only a constant number of global communication rounds. Since computing either 2D convex hull or triangulation requires time T-sequential = Theta(n log n) these algorithms either run in optimal time: Theta((n log n)/p), or in sort time, T-s(n, p), for the interconnection network in question. These results become optimal when T-sequential/P dominates T-s(n, p) or for interconnection networks like the mesh for which optimal sorting algorithms exist. (C) 1999 Academic Press.
引用
收藏
页码:47 / 70
页数:24
相关论文
共 36 条
  • [1] AKL SG, 1982, BIT, V22, P130
  • [2] ANDERSON E, 1997, P SUP 97
  • [3] [Anonymous], P 6 ANN ACM S PAR AL
  • [4] ON THE PARALLEL-DECOMPOSABILITY OF GEOMETRIC PROBLEMS
    ATALLAH, MJ
    TSAY, JJ
    [J]. PROCEEDINGS OF THE FIFTH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY, 1989, : 104 - 113
  • [5] FAST LINEAR EXPECTED-TIME ALGORITHMS FOR COMPUTING MAXIMA AND CONVEX HULLS
    BENTLEY, JL
    CLARKSON, KL
    LEVINE, DB
    [J]. ALGORITHMICA, 1993, 9 (02) : 168 - 183
  • [6] Bertsekas Dimitri P., 1989, PARALLEL DISTRIBUTED
  • [7] CHAZELLE B, 1984, IEEE T COMPUT, V33, P774, DOI 10.1109/TC.1984.1676494
  • [8] CHOW AL, 1981, P 19 ALL C COMM CONT, P214
  • [9] CULLER D, 1993, 5TH ACM SIGPLAN S PR, P1
  • [10] CYPHER R, 1990, ACM P 22 ANN ACM S T, P193