Unravelling Composition-Activity-Stability Trends in High Entropy Alloy Electrocatalysts by Using a Data-Guided Combinatorial Synthesis Strategy and Computational Modeling

被引:73
作者
Banko, Lars [1 ]
Krysiak, Olga A. [2 ]
Pedersen, Jack K. [3 ]
Xiao, Bin [1 ]
Savan, Alan [1 ]
Loeffler, Tobias [2 ,4 ]
Baha, Sabrina [1 ]
Rossmeisl, Jan [3 ]
Schuhmann, Wolfgang [2 ]
Ludwig, Alfred [1 ,4 ]
机构
[1] Ruhr Univ Bochum, Mat Discovery & Interfaces, Inst Mat, Univ Str 150, D-44801 Bochum, Germany
[2] Ruhr Univ Bochum, Analyt Chem, Ctr Electrochem Sci CES, Fac Chem & Biochem, Univ Str 150, D-44801 Bochum, Germany
[3] Univ Copenhagen, Theoret Catalysis, Ctr High Entropy Alloy Catalysis CHEAC, Dept Chem, Univ Pk 5, DK-2100 Copenhagen O, Denmark
[4] Ruhr Univ Bochum, Ctr Interface Dominated High Performance Mat, Univ Str 150, D-44801 Bochum, Germany
基金
新加坡国家研究基金会;
关键词
high entropy alloys; high-throughput experimentation; electrocatalysts; materials discovery; CATALYSTS;
D O I
10.1002/aenm.202103312
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High entropy alloys (HEA) comprise a huge search space for new electrocatalysts. Next to element combinations, the optimization of the chemical composition is essential for tuning HEA to specific catalytic processes. Simulations of electrocatalytic activity can guide experimental efforts. Yet, the currently available underlying model assumptions do not necessarily align with experimental evidence. To study deviations of theoretical models and experimental data requires statistically relevant datasets. Here, a combinatorial strategy for acquiring large experimental datasets of multi-dimensional composition spaces is presented. Ru-Rh-Pd-Ir-Pt is studied as an exemplary, highly relevant HEA system. Systematic comparison with computed electrochemical activity enables the study of deviations from theoretical model assumptions for compositionally complex solid solutions in the experiment. The results suggest that the experimentally obtained distribution of surface atoms deviates from the ideal distribution of atoms in the model. Leveraging both advanced simulation and large experimental data enables the estimation of electrocatalytic activity and solid-solution stability trends in the 5D composition space of the HEA system. A perspective on future directions for the development of active and stable HEA catalysts is outlined.
引用
收藏
页数:9
相关论文
共 28 条
[1]   Complex-Solid-Solution Electrocatalyst Discovery by Computational Prediction and High-Throughput Experimentation** [J].
Batchelor, Thomas A. A. ;
Loeffler, Tobias ;
Xiao, Bin ;
Krysiak, Olga A. ;
Strotkoetter, Valerie ;
Pedersen, Jack K. ;
Clausen, Christian M. ;
Savan, Alan ;
Li, Yujiao ;
Schuhmann, Wolfgang ;
Rossmeisl, Jan ;
Ludwig, Alfred .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (13) :6932-6937
[2]   High-Entropy Alloys as a Discovery Platform for Electrocatalysis [J].
Batchelor, Thomas A. A. ;
Pedersen, Jack K. ;
Winther, Simon H. ;
Castelli, Ivano E. ;
Jacobsen, Karsten W. ;
Rossmeisl, Jan .
JOULE, 2019, 3 (03) :834-845
[3]   Mechanochemical Synthesis of High Entropy Oxide Materials under Ambient Conditions: Dispersion of Catalysts via Entropy Maximization [J].
Chen, Hao ;
Lin, Wenwen ;
Zhang, Zihao ;
Jie, Kecheng ;
Mullins, David R. ;
Sang, Xiahan ;
Yang, Shi-Ze ;
Jafta, Charl J. ;
Bridges, Craig A. ;
Hu, Xiaobing ;
Unocic, Raymond R. ;
Fu, Jie ;
Zhang, Pengfei ;
Dai, Sheng .
ACS MATERIALS LETTERS, 2019, 1 (01) :83-88
[4]   Designing and Understanding the Superior Potassium Storage Performance of Nitrogen/Phosphorus Co-Doped Hollow Porous Bowl-Like Carbon Anodes [J].
Chen, Jiamin ;
Cheng, Yong ;
Zhang, Qiaobao ;
Luo, Chong ;
Li, Hong-Yang ;
Wu, Ying ;
Zhang, Hehe ;
Wang, Xiang ;
Liu, Haodong ;
He, Xin ;
Han, Jiajia ;
Peng, Dong-Liang ;
Liu, Meilin ;
Wang, Ming-Sheng .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (01)
[5]   Synthesis of high-entropy alloy nanoparticles on supports by the fast moving bed pyrolysis [J].
Gao, Shaojie ;
Hao, Shaoyun ;
Huang, Zhennan ;
Yuan, Yifei ;
Han, Song ;
Lei, Lecheng ;
Zhang, Xingwang ;
Shahbazian-Yassar, Reza ;
Lu, Jun .
NATURE COMMUNICATIONS, 2020, 11 (01)
[6]   High-entropy alloys [J].
George, Easo P. ;
Raabe, Dierk ;
Ritchie, Robert O. .
NATURE REVIEWS MATERIALS, 2019, 4 (08) :515-534
[7]   Electrosynthesis of high-entropy metallic glass nanoparticles for designer, multi-functional electrocatalysis [J].
Glasscott, Matthew W. ;
Pendergast, Andrew D. ;
Goines, Sondrica ;
Bishop, Anthony R. ;
Hoang, Andy T. ;
Renault, Christophe ;
Dick, Jeffrey E. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[8]   Nanoporous Al-Ni-Co-Ir-Mo High-Entropy Alloy for Record-High Water Splitting Activity in Acidic Environments [J].
Jin, Zeyu ;
Lv, Juan ;
Jia, Henglei ;
Liu, Weihong ;
Li, Huanglong ;
Chen, Zuhuang ;
Lin, Xi ;
Xie, Guoqiang ;
Liu, Xingjun ;
Sun, Shuhui ;
Qiu, Hua-Jun .
SMALL, 2019, 15 (47)
[9]  
Kitagawa J, 2020, CHEM SCI, V4, P515
[10]   Phase selection motifs in High Entropy Alloys revealed through combinatorial methods: Large atomic size difference favors BCC over FCC [J].
Kube, Sebastian Alexander ;
Sohn, Sungwoo ;
Uhl, David ;
Datye, Amit ;
Mehta, Apurva ;
Schroers, Jan .
ACTA MATERIALIA, 2019, 166 :677-686