Intra-islet glucagon confers β-cell glucose competence for first-phase insulin secretion and favors GLP-1R stimulation by exogenous glucagon

被引:24
作者
Cabrera, Over [1 ]
Ficorilli, James [1 ]
Shaw, Janice [1 ]
Echeverri, Felipe [2 ]
Schwede, Frank [3 ]
Chepurny, Oleg G. [4 ]
Leech, Colin A. [4 ]
Holz, George G. [4 ,5 ]
机构
[1] Eli Lilly & Co, Lilly Res Labs, Indianapolis, IN 46285 USA
[2] Biorep Technol, Miami Lakes, FL USA
[3] Biolog Life Sci Inst GmbH & Co KG, Bremen, Germany
[4] SUNY Upstate Med Univ, Dept Med, Syracuse, NY 13210 USA
[5] SUNY Upstate Med Univ, Dept Pharmacol, Syracuse, NY 13210 USA
关键词
PROTEIN-KINASE-A; PEPTIDE-1; RECEPTOR; SIGNAL-TRANSDUCTION; ALPHA-CELLS; ADENOSINE-3'; 5'-MONOPHOSPHATE LEVELS; INTRAVENOUS GLUCOSE; RAP1; ACTIVATION; MOUSE ISLETS; CAMP; EPAC;
D O I
10.1016/j.jbc.2021.101484
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We report that intra-islet glucagon secreted from alpha-cells signals through beta-cell glucagon and GLP-1 receptors (GcgR and GLP-1R), thereby conferring to rat islets their competence to exhibit first-phase glucose-stimulated insulin secretion (GSIS). Thus, in islets not treated with exogenous glucagon or GLP-1, first-phase GSIS is abolished by a GcgR antagonist (LY2786890) or a GLP-1R antagonist (Ex[9-39]). Mechanistically, glucose competence in response to intra-islet glucagon is conditional on beta-cell cAMP signaling because it is blocked by the cAMP antagonist prodrug Rp-8-Br-cAMPS-pAB. In its role as a paracrine hormone, intra-islet glucagon binds with high affinity to the GcgR, while also exerting a "spillover" effect to bind with low affinity to the GLP-1R. This produces a right shift of the concentration-response relationship for the potentiation of GSIS by exogenous glucagon. Thus, 0.3 nM glucagon fails to potentiate GSIS, as expected if similar concentrations of intra-islet glucagon already occupy the GcgR. However, 10 to 30 nM glucagon effectively engages the beta-cell GLP-1R to potentiate GSIS, an action blocked by Ex[9-39] but not LY2786890. Finally, we report that the action of intra-islet glucagon to support insulin secretion requires a step-wise in-crease of glucose concentration to trigger first-phase GSIS. It is not measurable when GSIS is stimulated by a gradient of increasing glucose concentrations, as occurs during an oral glucose tolerance test in vivo. Collectively, such findings are understandable if defective intra-islet glucagon action contributes to the characteristic loss of first-phase GSIS in an intravenous glucose tolerance test that is diagnostic of type 2 diabetes in the clinical setting.
引用
收藏
页数:18
相关论文
共 82 条
[1]   Subcellular dynamics of protein kinase A activity visualized by FRET-based reporters [J].
Allen, Michael D. ;
Zhang, Jin .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2006, 348 (02) :716-721
[2]   Review of methods for detecting glycemic disorders [J].
Bergman, Michael ;
Abdul-Ghani, Muhammad ;
DeFronzo, Ralph A. ;
Manco, Melania ;
Sesti, Giorgio ;
Fiorentino, Teresa Vanessa ;
Ceriello, Antonio ;
Rhee, Mary ;
Phillips, Lawrence S. ;
Chung, Stephanie ;
Cravalho, Celeste ;
Jagannathan, Ram ;
Monnier, Louis ;
Colette, Claude ;
Owens, David ;
Bianchi, Cristina ;
del Prato, Stefano ;
Monteiro, Mariana P. ;
Neves, Joao Sergio ;
Medina, Jose Luiz ;
Macedo, Maria Paula ;
Ribeiro, Rogerio Tavares ;
Raposo, Joao Filipe ;
Dorcely, Brenda ;
Ibrahim, Nouran ;
Buysschaert, Martin .
DIABETES RESEARCH AND CLINICAL PRACTICE, 2020, 165
[3]   RELATIONSHIPS BETWEEN FASTING PLASMA GLUCOSE LEVELS AND INSULIN-SECRETION DURING INTRAVENOUS GLUCOSE-TOLERANCE TESTS [J].
BRUNZELL, JD ;
ROBERTSON, RP ;
LERNER, RL ;
HAZZARD, WR ;
ENSINCK, JW ;
BIERMAN, EL ;
PORTE, D .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 1976, 42 (02) :222-229
[4]   Mechanisms controlling pancreatic islet cell function in insulin secretion [J].
Campbell, Jonathan E. ;
Newgard, Christopher B. .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2021, 22 (02) :142-158
[5]   Human islets contain a subpopulation of glucagon-like peptide-1 secreting α cells that is increased in type 2 diabetes [J].
Campbell, Scott A. ;
Golec, Dominic P. ;
Hubert, Matt ;
Johnson, Janyne ;
Salamon, Nicole ;
Barr, Amy ;
MacDonald, Patrick E. ;
Philippaert, Koenraad ;
Light, Peter E. .
MOLECULAR METABOLISM, 2020, 39
[6]   β Cell tone is defined by proglucagon peptides through cAMP signaling [J].
Capozzi, Megan E. ;
Svendsen, Berit ;
Encisco, Sara E. ;
Lewandowski, Sophie L. ;
Martin, Mackenzie D. ;
Lin, Haopeng ;
Jaffe, Justin L. ;
Coch, Reilly W. ;
Haldeman, Jonathan M. ;
MacDonald, Patrick E. ;
Merrins, Matthew J. ;
D'Alessio, David A. ;
Campbell, Jonathan E. .
JCI INSIGHT, 2019, 4 (05)
[7]   Nonconventional glucagon and GLP-1 receptor agonist and antagonist interplay at the GLP-1 receptor revealed in high-throughput FRET assays for cAMP [J].
Chepurny, Oleg G. ;
Matsoukas, Minos-Timotheos ;
Liapakis, George ;
Leech, Colin A. ;
Milliken, Brandon T. ;
Doyle, Robert P. ;
Holz, George G. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2019, 294 (10) :3514-3531
[8]   Chimeric peptide EP45 as a dual agonist at GLP-1 and NPY2R receptors [J].
Chepurny, Oleg G. ;
Bonaccorso, Ron L. ;
Leech, Colin A. ;
Wollert, Torsten ;
Langford, George M. ;
Schwede, Frank ;
Roth, Christian L. ;
Doyle, Robert P. ;
Holz, George G. .
SCIENTIFIC REPORTS, 2018, 8
[9]   Enhanced Rap1 Activation and Insulin Secretagogue Properties of an Acetoxymethyl Ester of an Epac-selective Cyclic AMP Analog in Rat INS-1 Cells STUDIES WITH 8-pCPT-2′-O-Me-cAMP-AM [J].
Chepurny, Oleg G. ;
Leech, Colin A. ;
Kelley, Grant G. ;
Dzhura, Igor ;
Dzhura, Elvira ;
Li, Xiangquan ;
Rindler, Michael J. ;
Schwede, Frank ;
Genieser, Hans G. ;
Holz, George G. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2009, 284 (16) :10728-10736
[10]   Phasic insulin release and metabolic regulation in type 2 diabetes [J].
Del Prato, S ;
Marchetti, P ;
Bonadonna, RC .
DIABETES, 2002, 51 :S109-S116