Recent advances of vanadium-based cathode materials for zinc-ion batteries

被引:42
作者
Li, Xuerong [1 ,2 ]
Cheng, Haoyan [1 ]
Hu, Hao [1 ]
Pan, Kunming [1 ,2 ]
Yuan, Tongtong [1 ]
Xia, Wanting [1 ]
机构
[1] Henan Univ Sci & Technol, Sch Mat Sci & Engn, Luoyang 471023, Peoples R China
[2] Henan Univ Sci & Technol, Natl Joint Engn Res Ctr Abras Control & Molding M, Henan Key Lab High Temp Struct & Funct Mat, Luoyang 471003, Peoples R China
基金
中国国家自然科学基金;
关键词
Aqueous zinc-ion batteries; Vanadium-based materials; Cathodes; Energy storage; Design strategy; HIGH-PERFORMANCE CATHODE; LONG CYCLE LIFE; HIGH-CAPACITY; STABLE CATHODE; HIGH-ENERGY; V2O5; INTERCALATION; ELECTROLYTE; VANADATE; TRANSITION;
D O I
10.1016/j.cclet.2021.04.045
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Zn-ion batteries (ZIBs) have gained great attention as promising next-generation power sources, because of their low cost, enviable safety and high theoretical capacity. Recently, massive researches have been devoted to vanadium-based materials as cathodes in ZIBs, owing to their multiple valence states, competitive gravimetric energy density, but the capacity degradation, sluggish kinetics, low operating voltage hinder further optimization of their performance in ZIBs. This review summarizes recent progress to increase the interlayer spacing, structural stability, and the diffusion ability of the guest Zn ions, including the insertion of different ions, introduction of defects, design of diverse morphologies, the combination of other materials. We also focus on approaches to promoting the valuable performance of vanadium-based cathodes, along with the related ongoing scientific challenges and limitations. Finally, the future perspectives and research directions of vanadium-based aqueous ZIBs are provided. (C) 2021 Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.
引用
收藏
页码:3753 / 3761
页数:9
相关论文
共 110 条
[1]   Electrochemical Zinc Intercalation in Lithium Vanadium Oxide: A High-Capacity Zinc-Ion Battery Cathode [J].
Alfaruqi, Muhammad H. ;
Mathew, Vinod ;
Song, Jinju ;
Kim, Sungjin ;
Islam, Saiful ;
Pham, Duong Tung ;
Jo, Jeonggeun ;
Kim, Seokhun ;
Baboo, Joseph Paul ;
Xiu, Zhiliang ;
Lee, Kug-Seung ;
Sun, Yang-Kook ;
Kim, Jaekook .
CHEMISTRY OF MATERIALS, 2017, 29 (04) :1684-1694
[2]   Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode [J].
Cai, Yangsheng ;
Liu, Fei ;
Luo, Zhigao ;
Fang, Guozhao ;
Zhou, Jiang ;
Pan, Anqiang ;
Liang, Shuquan .
ENERGY STORAGE MATERIALS, 2018, 13 :168-174
[3]   Boosting Zn-Ion Storage Performance of Bronze-Type VO2 via Ni-Mediated Electronic Structure Engineering [J].
Cai, Yi ;
Chua, Rodney ;
Kou, Zongkui ;
Ren, Hao ;
Yuan, Du ;
Huang, Shaozhuan ;
Kumar, Sonal ;
Verma, Vivek ;
Amonpattaratkit, Penphitcha ;
Srinivasan, Madhavi .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (32) :36110-36118
[4]  
Chae I.S., 2016, ADV ENERGY MATER, V6, P5607
[5]   Electrochemical Zinc-Ion Intercalation Properties and Crystal Structures of ZnMo6S8 and Zn2Mo6S8 Chevrel Phases in Aqueous Electrolytes [J].
Chae, Munseok S. ;
Heo, Jongwook W. ;
Lim, Sung-Chul ;
Hong, Seung-Tae .
INORGANIC CHEMISTRY, 2016, 55 (07) :3294-3301
[6]   V2O5@CNTs as cathode of aqueous zinc ion battery with high rate and high stability [J].
Chen, Hongzhe ;
Qin, Haigang ;
Chen, Linlin ;
Wu, Jian ;
Yang, Zhanhong .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 842
[7]   Ultrastable and High-Performance Zn/VO2 Battery Based on a Reversible Single-Phase Reaction [J].
Chen, Lineng ;
Ruan, Yushan ;
Zhang, Guobin ;
Wei, Qiulong ;
Jiang, Yalong ;
Xiong, Tengfei ;
He, Pan ;
Yang, Wei ;
Yan, Mengyu ;
An, Qinyou ;
Mai, Liqiang .
CHEMISTRY OF MATERIALS, 2019, 31 (03) :699-706
[8]   Energy storage performance and mechanism of the novel copper pyrovanadate Cu3V2O7(OH)2•2H2O cathode for aqueous zinc ion batteries [J].
Chen, Linlin ;
Yang, Zhanhong ;
Wu, Jian ;
Chen, Hongzhe ;
Meng, Jinlei .
ELECTROCHIMICA ACTA, 2020, 330
[9]   Highly Reversible Zinc-Ion Intercalation into Chevrel Phase Mo6S8 Nanocubes and Applications for Advanced Zinc-Ion Batteries [J].
Cheng, Yingwen ;
Luo, Langli ;
Zhong, Li ;
Chen, Junzheng ;
Li, Bin ;
Wang, Wei ;
Mao, Scott X. ;
Wang, Chongmin ;
Sprenkle, Vincent L. ;
Li, Guosheng ;
Liu, Jun .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (22) :13673-13677
[10]   Core-shell structured Fe2O3@Fe3C@C nanochains and Ni-Co carbonate hydroxide hybridized microspheres for high-performance battery-type supercapacitor [J].
Dai, Shuge ;
Bai, Yucheng ;
Shen, Weixia ;
Zhang, Sen ;
Hu, Hao ;
Fu, Jianwei ;
Wang, Xinchang ;
Hu, Chenguo ;
Liu, Meilin .
JOURNAL OF POWER SOURCES, 2021, 482 (482)