Boundary Integrals and Approximations of Harmonic Functions

被引:12
作者
Auchmuty, Giles [1 ]
Cho, Manki [1 ]
机构
[1] Univ Houston, Dept Math, Houston, TX 77204 USA
基金
美国国家科学基金会;
关键词
Boundary Integrals; Steklov eigenproblems; Mean value theorems; Harmonic Functions; 31B10; 31A25; EIGENPROBLEMS; SPACES;
D O I
10.1080/01630563.2015.1031383
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Steklov expansions for a harmonic function on a rectangle are derived and studied with a view to determining an analog of the mean value theorem for harmonic functions. It is found that the value of a harmonic function at the center of a rectangle is well approximated by the mean value of the function on the boundary plus a very small number (often 3 or fewer) of specific further boundary integrals. These integrals are coefficients in the Steklov representation of the function. Similar approximations are found for the central values of solutions of Robin and Neumann boundary value problems. The results follow from analyses of the explicit expressions for the Steklov eigenvalues and eigenfunctions.
引用
收藏
页码:687 / 703
页数:17
相关论文
共 14 条
[1]   Steklov eigenproblems and the representation of solutions of elliptic boundary value problems [J].
Auchmuty, G .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2004, 25 (3-4) :321-348
[2]   Spectral characterization of the trace spaces Hs(θΩ) [J].
Auchmuty, Giles .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2006, 38 (03) :894-905
[3]   Bases and comparison results for linear elliptic eigenproblems [J].
Auchmuty, Giles .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 390 (01) :394-406
[4]   REPRODUCING KERNELS FOR HILBERT SPACES OF REAL HARMONIC FUNCTIONS [J].
Auchmuty, Giles .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (05) :1994-2009
[5]  
Axler S, 2001, Graduate Texts in Mathematics series, VSecond
[6]  
Chipot M, 2009, BIRKHAUSER ADV TEXTS, P3
[7]  
Cho M., 2014, THESIS U HOUSTON HOU
[8]   Inverse positivity for general Robin problems on Lipschitz domains [J].
Daners, Daniel .
ARCHIV DER MATHEMATIK, 2009, 92 (01) :57-69
[9]  
Epstein B., 1962, P AM MATH SOC, V13, P830, DOI 10.2307/2034188
[10]  
Evans LC., 2018, Measure Theory and Fine Properties of Functions