FINITE ALPERIN 2-GROUPS WITH CYCLIC SECOND COMMUTANTS

被引:5
作者
Veretennikov, B. M. [1 ]
机构
[1] Ural State Tech Univ, Ekaterinburg 620002, Russia
关键词
2-group; Alperin group; commutant; representation of groups in terms of generators and defining relations;
D O I
10.1007/s10469-011-9137-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An Alperin group is a group in which every 2-generated subgroup has a cyclic commutant. Previously, we constructed examples of finite Alperin 2-groups with second commutant isomorphic to Z(2) or Z(4). Here, it is proved that for any natural n, there exists a finite Alperin 2-group whose second commutant is isomorphic to Z(2n).
引用
收藏
页码:226 / 244
页数:19
相关论文
共 5 条
[1]  
Alperin JL, 1963, T AM MATH SOC, V106, P77
[2]  
[Anonymous], 1959, THEORY GROUPS
[3]  
Magnus W., 2004, COMBINATORIAL GROUP
[4]  
Veretennikov BM, 2007, SIB ELECTRON MATH RE, V4, P155
[5]  
VERETENNIKOV BM, 1980, SIB MAT ZH, V21, P200