Almost Periodic Solutions of Monotone Second-Order Differential Equations

被引:0
作者
Ayachi, Moez [1 ]
Blot, Joel [2 ]
Cieutat, Philippe [3 ]
机构
[1] Fac Sci Gabes, Dept Math, Cite Erriadh 6072, Gabes, Tunisia
[2] Univ Paris 01, SAMM EA 4543, F-75013 Paris, France
[3] Univ Versailles St Quentin En Yvelines, CNRS, UMR 8100, LMV, F-78035 Versailles, France
关键词
Hilbert spaces; Bohr-almost periodic; Besicovitch-almost periodic; maximal monotone operators; SYSTEMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give sufficient conditions for the existence of almost periodic solutions of the second-order differential equation u '' (t) = f (u(t)) + e(t) on a Hilbert space H, where the vector field f: H -> H is monotone, continuous and the forcing term e : R -> H is almost periodic. Notably, we state a result of existence and uniqueness of the Besicovitch almost periodic solution, then we approximate this solution by a sequence of Bohr almost periodic solutions.
引用
收藏
页码:541 / 554
页数:14
相关论文
共 24 条
[1]  
AHMAD S., 1996, APPL ANAL, V63, P389
[2]  
[Anonymous], 1973, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert
[3]  
[Anonymous], 1975, STABILITY THEORY EXI
[4]  
[Anonymous], 2005, INT J EVOL EQU
[5]   FORCED QUASI-PERIODIC AND ALMOST-PERIODIC SOLUTION FOR NONLINEAR-SYSTEMS [J].
BERGER, MS ;
CHEN, YY .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1993, 21 (12) :949-965
[6]  
BESICOVITCH AS, 1932, ALMOST PERIODIC FUNC
[7]   ALMOST-PERIODIC OSCILLATIONS OF EULER-LAGRANGE EQUATIONS [J].
BLOT, J .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1994, 122 (02) :285-304
[8]  
Blot J., 1993, Funkcial. Ekvac., V36, P235
[9]  
Blot J, 1991, ANN FAC SCI TOULOUSE, V12, P351
[10]  
BLOT J, 2007, DYNAM CONT DIS SER A, V14, P97