Synthesis and phase stability of zirconia-lanthania-ytterbia-yttria nanoparticles; a promising advanced TBC material

被引:13
作者
Keyvani, A. [1 ]
Mostafavi, N. [1 ]
Bahamirian, M. [2 ]
Sina, H. [3 ]
Rabiezadeh, A. [4 ]
机构
[1] Shahrekord Univ, Fac Engn & Technol, Dept Met & Mat Engn, Shahrekord, Iran
[2] Mat & Energy Res Ctr, Dept Ceram, Karaj, Iran
[3] European Res Infrastruct Consortium, European Spallat Source, Lund, Sweden
[4] Islamic Azad Univ, Shiraz Branch, Coll Chem & Mat Engn, Dept Mat Engn, Shiraz, Iran
关键词
Co-precipitation method; 5.86 Mol.%Y2O3-1.99 Mol.%La2O3-.1.98 Mol.%Yb2O3-ZrO2; T-prime ZrO2 phase; phase stability; THERMAL BARRIER COATINGS; TRANSFORMATION; STABILIZATION; CONDUCTIVITY; TEMPERATURE; POWDERS;
D O I
10.1080/21870764.2020.1743419
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Advanced thermal barrier coatings (TBCs) developed by incorporating multicomponent rare earth oxide dopants into zirconia are promising alternative to replace yttria-stabilized zirconia (YSZ) thermal barrier coatings. In this study, a zirconia-based nanopowder coating doped by multiple rare earth oxides (YLaYbZr: 5.86 Mol.%Y2O3-1.99 Mol.%La2O3-1.98 Mol.%Yb2O3-ZrO2) was synthesized using co-precipitation technique which is advantageous in terms of simplicity and cost-effectiveness. The product was then characterized using X-ray diffraction (XRD) method and field emission scanning electron microscopy (FESEM). The stability of YLaYbZr compound was studied after a heat treating the product at 1300 degrees C for 50 h. The results indicated that the initially obtained powder was a metastable tetragonal (t-prime) zirconia. Rietveld refinement of the XRD data from YLaYbZr powder after 50 h of heat treatment at 1300 degrees C confirmed stabilization of zirconia in the t-prime phase with around 15 wt.% monoclinic impurity. Furthermore, FESEM results (before and after heat treatment) indicated orderly particles of uniform shape and size with a small tendency toward agglomeration.
引用
收藏
页码:336 / 344
页数:9
相关论文
共 33 条
[1]   Phase stability of ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 compound at 1100 °C and 1300 °C for advanced TBC applications [J].
Bahamirian, M. ;
Hadavi, S. M. M. ;
Farvizi, M. ;
Rahimipour, M. R. ;
Keyvani, A. .
CERAMICS INTERNATIONAL, 2019, 45 (06) :7344-7350
[2]   Synthesis and Characterization of Yttria-Stabilized Zirconia Nanoparticles Doped with Ytterbium and Gadolinium: ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 [J].
Bahamirian, M. ;
Hadavi, S. M. M. ;
Rahimipour, M. R. ;
Farvizi, M. ;
Keyvani, A. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2018, 49A (06) :2523-2532
[3]   PHASE-STABILITY OF ZIRCONIA-BASED THERMAL BARRIER COATINGS .1. ZIRCONIA YTTRIA ALLOYS [J].
BRANDON, JR ;
TAYLOR, R .
SURFACE & COATINGS TECHNOLOGY, 1991, 46 (01) :75-90
[4]   Ceramic materials for thermal barrier coatings [J].
Cao, XQ ;
Vassen, R ;
Stoever, D .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2004, 24 (01) :1-10
[5]   On the size-dependent phase transformation in nanoparticulate zirconia [J].
Chraska, T ;
King, AH ;
Berndt, CC .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2000, 286 (01) :169-178
[6]   Thermal barrier coating materials [J].
Clarke, David R. ;
Phillpot, Simon R. .
MATERIALS TODAY, 2005, 8 (06) :22-29
[7]  
Cullity B.D., 1957, Phys. Today, V10, P50, DOI [DOI 10.1063/1.3060306, 10.1063/1.3060307, DOI 10.1063/1.3060307, 10.1119/1.1934486, DOI 10.1119/1.1934486]
[8]   STABILIZATION OF TETRAGONAL STRUCTURE IN ZIRCONIA MICROCRYSTALS [J].
GARVIE, RC .
JOURNAL OF PHYSICAL CHEMISTRY, 1978, 82 (02) :218-224
[9]   INTRINSIC SIZE DEPENDENCE OF THE PHASE-TRANSFORMATION TEMPERATURE IN ZIRCONIA MICROCRYSTALS [J].
GARVIE, RC ;
GOSS, MF .
JOURNAL OF MATERIALS SCIENCE, 1986, 21 (04) :1253-1257
[10]   OCCURRENCE OF METASTABLE TETRAGONAL ZIRCONIA AS A CRYSTALLITE SIZE EFFECT [J].
GARVIE, RC .
JOURNAL OF PHYSICAL CHEMISTRY, 1965, 69 (04) :1238-&